Original Article
  • Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images
  • Hangil You*, Gun Jin Yun*†

  • Department of Aerospace Engineering, Seoul National University

  • 삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측
  • 유한길*·윤군진*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs


본 연구에서는 고분자 전해질막 연료전지용 가스확산층의 투과도를 예측하기 위해 삼차원 합성곱 신경망 모델을 사용하는 방법론을 소개한다. 먼저, 기계학습 모델을 학습시키기 위해 X-선 단층 촬영을 통해 얻은 실제 가스확산층 이미지에서 형태학적 특성을 추출해 가스확산층의 대표 체적 요소로 이루어진 인공 데이터셋을 생성한다. 이러한 형태학적 특성은 다공성, 섬유 배향, 직경의 통계적 분포가 포함된다. 구축한 인공 데이터셋 대표 체적 요소들의 투과도를 평가하기 위해 격자 볼츠만 방법이 사용되었으며 각각의 대표 체적 요소들의 투과도를 도출하였다. 이러한 인공 데이터셋을 통해 삼차원 합성곱 신경망 모델을 학습시켰으며 인공 데이터셋을 학습한 삼차원 합성곱 신경망 모델이 실제 가스확산층의 대표 체적 요소 투과도 또한 잘 예측하는 것을 확인하였다


Keywords: 가스확산층(Gas Diffusion Layer), 고분자 전해질막 연료전지(Proton Exchange Membrane Fuel Cell), 삼차원 합성곱 신경망(3D Convolutional Neural Network), 미세구조(Microstructure)

This Article

Correspondence to

  • Gun Jin Yun
  • Department of Aerospace Engineering, Seoul National University

  • E-mail: gunjin.yun@snu.ac.kr