Wonjoo Lee*, Suhan Kim*, Hyun Jong Sim*, Ju Ho Lee**, Byeong Hyeok An**, Yu Jung Kim**, Sang Yung Jeong**, Hyunseong Shin*†
* Department of Mechanical Engineering, Inha University
** Dongsung Finetec MSI material Research Team
이원주* · 김수한* · 심현종* · 이주호** · 안병혁** · 김유정** · 정상융** · 신현성*†
This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this study, we developed a transfer learning framework based on homogenization data for efficient prediction of the effective mechanical properties and thermal conductivity of cellular foam structures. Mean-field homogenization (MFH) based on the Eshelby’s tensor allows for efficient prediction of properties in porous structures including ellipsoidal inclusions, but accurately predicting the properties of cellular foam structures is challenging. On the other hand, finite element homogenization (FEH) is more accurate but comes with relatively high computational cost. In this paper, we propose a data-driven transfer learning framework that combines the advantages of mean-field homogenization and finite element homogenization. Specifically, we generate a large amount of mean-field homogenization data to build a pre-trained model, and then fine-tune it using a relatively small amount of finite element homogenization data. Numerical examples were conducted to validate the proposed framework and verify the accuracy of the analysis. The results of this study are expected to be applicable to the analysis of materials with various foam structures
본 연구에서는 폼 구조의 효율적인 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크를 개발하였다. Eshelby 텐서 기반의 평균장 균질화(Mean-field homogenization, MFH)는 타원체 형태의 공동을 포함하는 다공성 구조의 물성을 효율적으로 예측할 수 있지만, 셀룰러(cellular) 폼 구조의 물성은 정확하게 예측하기 어렵다. 한편, 유한요소 균질화(Finite element homogenization, FEH)는 정확성은 높지만 상대적으로 높은 해석 시간을 동반한다. 본 논문에서는 평균장 균질화와 유한요소 균질화의 장점을 결합한 데이터 기반 전이학습 프레임워크(Framework)를 제안하였다. 구체적으로, 대량의 평균장 균질화 데이터를 도출하여 사전학습 모델(Pre-trained model)을 구축하고, 상대적으로 소량의 유한요소 균질화 데이터를 이용하여 미세 조정(Fine-tuning)하였다. 제안된 프레임워크를 검증하기 위한 수치 예제를 수행하였으며, 해석 정확도를 확인하였다. 본 연구의 결과는 다양한 폼 구조를 가진 재료의 해석에 적용할 수 있을 것으로 기대한다.
Keywords: 폼 구조(Foam structure), 기계학습(Machine learning), 멀티스케일 해석(Multiscale analysis), 균질화(Homogenization), 유한요소해석(Finite element analysis)
2023; 36(3): 205-210
Published on Jun 30, 2023
Department of Mechanical Engineering, Inha University