Ji-Ye Bak*, Jeong Kim*†
Department of Aerospace Engineering, Pusan National University, Busan, Korea
박지예* · 김정*†
This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM (finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN (artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.
항공우주산업에서 경량화를 위해 사용되는 CFRP 복합재료로 구성된 차체의 충격에 따른 파손은 탑승자의 안전과 직결된다. 따라서 충돌 상황에서 육안으로 확인하기 힘든 재료의 손상거동을 파악하는 것이 중요하며, 이를 구현할 수 있는 유한요소모델을 통한 연구가 필요하다. 본 연구에서는 일방향 적층 복합재료의 충돌 해석에 대해 파손 거동 예측에 적합한 유한요소모델을 구축하였다. 인공신경망 모델을 통해 LS-DYNA에서 제공하는 MAT_54 Enhanced Composite Damage 재료 모델의 교정 파라미터를 역추정하여 획득하였다. 획득한 파라미터에 대한 인공신경망 모델의 결과를 실험결과와 비교하여 신뢰성을 검증하였다. 그 결과, 교정 파라미터의 최적화를 통해 실험에 대한 정확도를 향상시킨 유한요소모델을 구축할 수 있음을 확인하였다
Keywords: CFRP 복합재료(Carbon Fiber Reinforced Plastic Composite), 충돌해석(Impact Analysis), 인공신경망(Artificial neural network), 파라미터 역추정(Inverse Parameter Estimation), 유한요소모델(Finite Element Model)
2023; 36(1): 59-67
Published on Feb 28, 2023
Department of Aerospace Engineering, Pusan National University, Busan, Korea