Original Article
  • Stiffness Enhancement of Piecewise Integrated Composite Robot Arm using Machine Learning
  • Seungmin Ji*, Seokwoo Ham*, Seong S. Cheon*†

  • * Department of Mechanical Engineering, Graduated School, Kongju National University
    ** Lacomtech Co. Ltd

  • 머신 러닝을 이용한 PIC 로봇 암 강성 향상에 대한 연구
  • 지승민* · 함석우* · 전성식*†

  • This article is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

PIC (Piecewise Integrated Composite) is a new concept for designing a composite structure with mosaically assigning various types of stacking sequences in order to improve mechanical properties of laminated composites. Also, machine learning is a sub-category of artificial intelligence, that refers to the process by which computers develop the ability to continuously learn from and make predictions based on data, then make adjustments without further programming. In the present study, the tapered box beam type PIC robot arm for carrying and transferring wide and thin LCD display was designed based on the machine learning in order to increase structural stiffness. Essential training data were collected from the reference elements, which were intentionally designated elements among finite element models, during preliminary FE analysis. Additionally, triaxiality values for each finite element were obtained for judging the dominant external loading type, such as tensile, compressive or shear. Training and evaluating machine learning model were conducted using the training data and loading types of elements were predicted in case the level accuracy was fulfilled. Three types of stacking sequences, which were to be known as robust toward specific loading types, were mosaically assigned to the PIC robot arm. Henceforth, the bending type FE analysis was carried out and its result claimed that the PIC robot arm showed increased stiffness compared to conventional uni-stacking sequence type composite robot arm


PIC(Piecewise Integrated Composite)는 적층 복합재의 기계적 특성을 향상시키기 위해 다양한 적층 순서를 모자이크 방식으로 할당하여 복합 구조를 설계하는 새로운 개념이다. 또한 머신 러닝은 인공 지능의 하위 범주로, 컴퓨터가 데이터에서 지속적으로 학습하고 데이터를 기반으로 예측하는 능력을 개발한 다음 추가 프로그래밍 없이 조정하는 과정을 의미한다. 본 연구에서는 구조적 강성을 높이기 위해 기계학습을 기반으로 넓고 얇은 LCD 디스플레이를 운반 및 이송하기 위한 테이퍼 박스형 빔형 PIC 로봇 암이 설계되었다. 필수 학습 데이터는 예비 FE 해석 과정에서 유한 요소 모델 중 의도적으로 배치된 참조 요소에서 수집되었다. 또한 인장, 압축 또는 전단과 같은 지배적인 외부 하중 유형을 판단하기 위해 각 유한 요소에 대한 3축 특성 값을 얻었다. 학습 데이터를 이용하여 머신 러닝 모델을 훈련하고 평가되었으며, 정확도 레벨을 만족한 머신 러닝 모델을 이용해 요소의 로딩 유형을 예측하였다. 특정 하중 유형에 대해 우세한 것으로 알려진 세 가지 유형의 적층 각도 순서가 PIC 로봇 암에 모자이크 방식으로 할당되었습니다. 이후 굽힘형 FE 해석을 수행한 결과 PIC 로봇 암이 기존의 단일 적층 각도 순서로 제작된 복합재 로봇 암에 비해 강성이 증가된 것으로 나타났다


Keywords: LCD 유리패널 디스플레이(LCD glass panel display), 박스 빔(Box beam), 탄소/에폭시 복합재(Carbon/epoxy composite material), 머신 러닝(Machine learning), 구간 조합 복합재(Piecewise integrated composite)

This Article

Correspondence to

  • Seong S. Cheon
  • Department of Mechanical Engineering, Graduated School, Kongju National University

  • E-mail: sscheon@kongju.ac.kr