L R R S 19

32 12 949 sEdEA ] digt 3

o] QA B, oplE mEAY, AL
Solution to Elasticity Problems of Structural Elements of Composite Materials

A. M. Afsar’', N. M. L. Huq**, F. A. Mirza" and J. L Song*+

ABSTRACT

The present study describes a method for analytical solution to elastic field in structural elements of general
symmetric laminated composite materials. The two dimensional plane stress elasticity problems under mixed boundary
conditions are reduced to the solution of a single fourth order partial differential equation, expressed in terms of a
single unknown function, called displacement potential function. In addition, all the components of stress and
displacement are expressed in terms of the same displacement potential function, which makes the method suitable for
any boundary conditions. The method is applied to obtain analytical solutions to two particular problems of structural
elements consisting of an angle-ply laminate and a cross-ply laminate, respectively. Some numerical results are
presented for both the problems with reference to the glass/epoxy composite. The results are highly accurate and
reliable as all the boundary conditions including those in the critical regions of supports and loads are satisfied
exactly. This verifies the method as a simple and reliable one as well as capable to obtain exact analytical solution
to elastic field in structural elements of composite materials under mixed and any other boundary conditions.
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1. Introduction current technological development as these materials are
being increasingly used in almost every branch of engineering
Now-a-days, composite materials are the integral part of because of their outstanding advantages over conventional
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monolithic materials. Among others, structural applications of
these materials have received wide attention to ensure better
performance in terms of weight, strength, and stiffness.
However, the design of a structural element with composite
materials requires detail information of its characteristics
under actual boundary conditions, e.g., loading and constraint
conditions. These boundary conditions may be imposed
externally or by an adjacent element of a structure. Very
often, the boundary conditions imposed on an element are
expected to be mixed type, i.e., a part of the boundary is
associated with stress or loading conditions while the other
part of the boundary is associated with constraint or
displacement conditions. Therefore, a suitable method is
inevitable for the analytical solution to elastic field in
structural elements of composite materials to know their
exact characteristics under mixed boundary conditions.

For the solution of two dimensional elasticity problems,
two well known approaches, namely Airy stress function
approach [1] and displacement parameter approach [2], are
being usually used since long ago. For the problems
associated with the stress boundary conditions, the Airy stress
function approach can be used to obtain analytical solution.
However, this approach appears to be inadequate for the
problems associated with displacement boundary conditions.
This category of the problems can be treated by displacement
parameter approach [2]. However, the displacement parameter
approach  experiences two major shortcomings. Firstly,
formulations of two dimensional elasticity problems in terms
of displacement parameters yields two simultaneous second
order partial differential equations which are quite difficult to
solve analytically. Secondly, the mixed boundary conditions
cannot be dealt with by this approach. Thus, it appears that
neither of the approaches mentioned above is suitable to
address the mixed boundary value problems.

To overcome the above shortcomings and develop a
suitable method to address the mixed boundary value
problems, more than one decade before, Iddris et al. [3] and
Ahmed et al. [4] developed a relatively new approach,
called displacement potential approach, for the solution to
elasticity problems of isotropic materials. The approach was
proved to be applicable for any modes of boundary
conditions. Akanda et al. [5] used this approach to solve the
stress problems of gear teeth by finite difference method.
Later, the approach was extended for an orthotropic lamina
and a number of problems under mixed boundary conditions
were solved both analytically [6-8] and numerically [9].
However, the extended approach was applicable to orthotropic

lamina only, i.e., the angle lamina and laminated composites
could not be analyzed by the approach. But, in practice,
most of the structural elements consist of laminated
composites instead of a single lamina to ensure desired
performance. Thus, it is important to modify and extend the
approach so as to cover the structural elements of laminated
composites for the solution of more practical elasticity
problems of composites.

Very recently, the above displacement potential approach
has been further extended for laminated composites by Huq
[10] and Afsar et al. [11]. It was demonstrated that the
method could be applied to obtain the analytical solution of
elasticity problems of composite structural elements. However,
there was a limitation that the method was not capable to
address the angle-ply laminates for any ply angle. Thus, this
study is aimed to overcome the limitation associated with the
angle-ply laminates. Firstly, the general formulations of the
displacement potential approach for a general symmetric
laminated composite is discussed by emphasizing its merits
over two well-know traditional approaches for the solution to
elasticity problems. Secondly, the displacement potential
approach is demonstrated to obtain analytical solutions for two
specific problems, namely, a deep stiffened cantilever beam of
angle-ply laminated composite and a roller guided panel of
cross-ply laminated composite. Finally, some numerical results
of elastic field (stress and displacement components) are
presented to examine the effects of ply-angle and laminate
stacking sequence for the cases of cantilever beam and panel,
respectively, with reference to the glass/epoxy composite. It
should be noted that the panel problem was considered earlier
in Ref. [11] where laminate stacking sequence was not taken
into account. This study considers the laminate stacking
sequence to examine the capability and versatility of the

displacement potential approach.

2. Theoretical Formulations

For a general laminate in the Cartesian coordinate system

x-y, the stress-strain relation is given by [12, 13]

MW 0

where N denotes the components of in-plane force per unit

length, M denotes the components of moment per unit
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length, £° denotes the components of mid-plane strain, &

denotes the components of mid-plane curvature, and A4, B,
and D denote the components of extensional stiffness matrix,
bending-extension coupling stiffness matrix, and bending
stiffness matrix, respectively.

When the laminate is symmetric and acted upon by
in-plane load only, the coupling stiffness matrix B and
curvature X in Eq. (1) vanish. Also, the global strains are
equal to the mid-plane strains and shear-extension coupling
terms of the extensional stiffness matrix are zero for such

cases. Thus, Eq. (1) can be written as

o, | 4, 4, 0 &
o, |= ; A, 4, 0 &, 2)
o, 0 0 A Vs

where the average stress components ©,, O,, and O, are

obtained by dividing the components of in-plane force N
(Nx, Ny, Nw) per unit length by the total thickness of the
laminate 4. The components of the extensional stiffness
matrix 4 are given by

A, = ii:l:Qn”4 + Qs +2(0, +2Qﬁo)szcz:|k (e =h ) 3(a)
4, = i[(Qﬂ +0, —40 )SZCZ +0, (C4 +s* )Jk (hA _hk—l) 3(b)
Ay = ZVL:IZQHS4 + 05t +2(0, +2Q<m)szcz:|k (e =) 3(c)

n

Ay = ZI:(QII +0,-20, _ZQM)'YZCZ '*'Qm»(s4 +C4)]k (hA _h’f 1) 3((1)

k=1

Here,
E,
1- VaVia

VlZEZ EZ

1_"21‘/12

0, = 5 0, =

5 sz= s Q66:G12a

1- VaVia
c=cosf, s=sin@, h —h_ is the thickness of the k-th

ply of the laminate, € is the angle between the x-axis and
the fiber direction of a lamina in the laminate, Ei1 and E2
are the Young’s modulus in the longitudinal and the
transverse directions, respectively, vi2 and v21 are the major
and minor Poison’s ratios, respectively, and Gi2 is the
in-plane shear modulus of a lamina in the laminate.

In the absence of body forces, the two dimensional equilibrium
equations can be written as [1]

0
9., %% _ 4(a)
ox Oy
0o, 0o,
Ly 4(b)
dy Ox

The relationships between the three strain components and

the two displacement components are given by [1]

ou
=— 5
& 5 (@)
o = ov 5(b
a ®)
ou Ov
=—4—
Vs oy ox 3©

where u and v are the displacement components in the x-
and y-directions, respectively.

2.1 Airy stress function approach

By inverse operation, Eq. (2) can be written as

) L, 0| o, |h (6)
Ve 0 0 Ig|lo

X

where the elements of the compliance matrix / and the
stiffness matrix 4 have a relation of [I]:[A]’].

The compatibility condition is [1]
e O, 62770_

x4 v o 7
o ' oxdy M

The Airy stress function ¢ is defined as [1]

o, = Z;—f 8(a)
_o9

o, = P 8(b)
__0Y

Oy = oxdy 8(c)

By making use of Egs. (4) and (6)-(8), one can obtain
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Combination of Egs. (5), (6), and (8) gives

ou (& &

az[[n o +1 6;?}/1 10(a)

v _(, &, &

= =[122 L, —ay‘th 10)
2

Lk 10(c)

o oamay

The solution of elasticity problems following the Airy
stress function approach requires the solution of Eq. (9).
However, this approach appears to be efficient only for
stress boundary conditions as one can readily apply the
stress boundary conditions by using Eq. (8). When boundary
conditions are prescribed in terms of displacements/constraints,
it is quite difficult to directly apply the boundary conditions
as one requires integration of Eq. (10) before applying the
boundary conditions. Thus, this approach seems to be inconvenient

for displacement and mixed boundary conditions.

2.2 Displacement parameter approach
Making use of Egs. (2), (4), and (5) yields

o’u o’ o’u
A,ler(AlerA%)%JrAﬁog:O 11(a)

o o’u o’
A22$+(AIZ+A66)%+A66¥=0 11(b)

Equation (11) represents two second order elliptic partial
differential equations of equilibrium in terms of two
displacement parameters u# and v. Although this is suitable
for applying displacement boundary conditions, it is quite
difficult to obtain analytical solution satisfying these two
partial differential equations simultaneously. Further, this
approach is not convenient for stress boundary and mixed
boundary conditions.

2.3 Displacement potential function approach

As discussed above, both the Airy stress function
approach and the displacement parameter approach have
some limitations to obtain analytical solution of elasticity

problems, particularly the mixed boundary value problems.

Thus, the present study is aimed at developinga method for
the analytical solution of elasticity problems of structural
elements of composite materials under any boundary conditions
prescribed in terms of either stress or displacement or any
combination of these, i.e. mixed boundary conditions. To
realize this, a new function, called displacement potential
function w(x, y), is introduced. The two displacement
parameters u and v are expressed in terms of this
displacement potential function w(x, y) as

2
u= Ty
Ox0y

12(a)

A 0* 0’
S 1 vzf I vzl 12(b)
A, + Ay Ox A, + Ay Oy

Using of this definition of w(x, y) in to Eq. (11) satisfies
the first equation of Eq. (11) automatically and the second
equation is reduced to the following fourth partial
differential equation.

=0 (13)

Now there is only one equation (Eq. (13)) to be dealt with
as the first equation (Eq. 11(a)) is satisfied automatically.
Thus, the major advantage of the present approach is that
the mixed boundary problems of elasticity has been reduced
to the solution of a single equation of the single parameter
w. This reduces the computational time and cost for both
the analytical and numerical solutions of mixed boundary
value problems. Using Egs. (2), (5) and (12), the
components of stress can be expressed in terms of the same
displacement potential function w(x, y) as

A o’ o
o, = & 4, ;// 4 V3/ 14(2)
h(A12 +A66) Ox~0y oy
1 X% X%
o, :m{(“lﬁz + A, Ay — Aquz)% = Ay, A4, §j| 14(b)
A oy oy
o = N -4, —
¥ h(4, +A66){ ovgyt M ax’ 14©)

It is obvious that this approach is based on the solution of
the displacement potential function w(x, y) from Eq. (13).
Once the displacement potential function w(x, y) is found,
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the components of displacement and stress can be readily
found from Egs. (12) and (14), respectively. It is interesting
to note that all the components of stress and displacement
have been expressed in terms of the displacement potential
function w(x, y). Thus, this approach is suitable for any
boundary conditions whether they are prescribed in terms of
either stress or displacement or any combination of them. In
the present study, this approach is applied to two particular
problems of composite elements under mixed boundary
conditions and analytical solution of different components of
stress and displacement is presented.

By considering only a single ply in Eq. (3) and assuming
the fibers in the x-direction, one can readily obtain the
corresponding set of formulations of displacement potential
approach for a single lamina as [9]

4

oy
E]Glzi

ox*

+ E,(E -2m,G,,) 26 2
4 (15)

2
u=v 16(a)
Ox0y
2
1 E ZW
= 5 16(b)
+ G, (El i E ) ayz/
X 7 1 ooy Hop £y 3’ a
oy
( His GIZ - El)

o,= BE o'y 17(b)

y Z a}l//

Y2 y

Py

EG, Elai:

= 17(0)
Y VA u oy
2 oxoy*
where

Z=u,EE, +G,(E _MzzEz) (18)

3. Application of Displacement Potential Approach

In this section, the displacement potential function approach
is applied to obtain analytical solution to elastic field in two
specific structural elements of laminated composite. The first

problem is associated with a deep stiffened cantilever beam of
symmetric angle ply laminated composite while the second
one is a roller guided rectangular panel of symmetric cross-ply
laminated composite.

3.1 A deep stiffened cantilever beam

A deep stiffened cantilever beam of symmetric angle-ply
laminated composite is shown in Fig. 1. The depth and
length of the beam are denoted by a and b, respectively.
The left lateral edge is rigidly fixed to a support and the
two longitudinal edges parallel to the x-axis are stiffened. It
is worthy to mention that stiffeners are usually used in
structural elements in order to increase the stiffness, which,
in turn, reduces the degree of deformation of the structural
elements. The right lateral edge is subjected to a parabolic

shear load O‘?y =4P(y* —ay)/a’, where P is the maximum

value of the shear stress at y = a@/2. It is usual practice that
a concentrated load at the tip of a cantilever beam is
simulated by the parabolic shear load to ease the analysis
[1]. The fiber angle is defined by €. The boundary
conditions of the present beam problem are

() ux (x, 0) = ux (x, @) =0, 0<x<bh

(i) oy (x, 0) =0y (x, ) =0; 0 <x < b

(iii) ux (0, ) =uy (0, ) =0; 0 <y <a

(iv) U\(b,y) 00‘\)(by ( —ay)/az;OSySa

Y Stiffened edges Fibers /{ 0

Fig. 1 A deep stiffened cantilever beam of symmetric angle-ply laminated
composite.

The stiffeners at the top (v = a) and bottom (y =
boundaries of the beam are mathematically defined by the fact
that there is no displacement along their length (boundary
condition (i)). To obtain the solution of the present beam
problem, Eq. (13) should be solved for w(x, y) so that the
components of displacement and stress determined from w(x, y)
satisfy the above boundary conditions.
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For the present problem, the solution of Eq. (13) is
assumed in the form of Fourier series as

1//=Z:chosay+Mx3 19

m=1

where Xn is a function of x only, M is an arbitrary
constant, and o = ma/a. It should be noted that any other
forms of w(x, y) may be assumed. However, it is important
to verify that all the boundary conditions above are
identically satisfied. It is interesting to note that the
assumption for w(x, y) in Eq. (19) automatically satisfies the
first four boundary conditions in items (i) and (ii). Thus,
only the boundary conditions (iii) and (iv) are remaining to
be satisfied.

Substitution of Eq. (19) into Eq. (13) yields

X" BX!'a® +CX,a* =0 (20)
A, A, 24
where =22 2B 4y C="2 The general
A66 Al 1A66 Al 1 11
solution of Eq. (20) is
X,=A4,€"+B " +C e +D e 1)

where

n.,n, =a(BENB*—4C)/2 22(a)
n,n, =—a\[(B£B* —4C)/2 22(b)

and Am, Bm, Cm, and Dm are arbitrary constants that should be
determined from the remaining four boundary conditions. Now
making use of Eqs. (13) and (21) in Egs. (12) and (14), the
components of displacement and stress can be expressed in
terms of the four constants Am, Bm, Cm, and Dm as

Ms

iy o e
[—(nlA e" +n,B " +n,C, e

m m

u=

m

23(a)
+n,D,e"" ) asinay]

1 = )
y=——-— A (A e +B e +C ™"
o Sl s B,
+Dme"‘x)a2 — 4, (nleme”‘X i nmee”” 23(b)

m

+nC e +n.D,e" )} cosay —6MxA,, |

o, = TTRYR (A:i ) ;[Alz(Ame”"‘ +B,e" +C, e
+ Dme””)oz3 + 4, (”12 A"+ nmee”lX 24(@)
+n;C "™ +n;D,e" ) a]sinay
o, = —;ZAO:[AZZA66 (4,e" +B.e" +C e""
Y h(Ay+ Ag)
24(b)

+ Dme"“")a3 + (A122 + A4, Ag - AnAzz)(nleme"lx

2 w2 my 27y mx .
+mB, e +n,C,e" +n;D,e")a]sinay

m

4, N )
66 X Ny X 113X
o :—72[14 mA e +n,B e +n,C e
a0 12 U A, 2B 38 m
h(4,+Ag)

nxy 2 3 nx 3 nyx 3 nyx

+n,D, "V + 4, (n 4,e" +n,B,e"™ +n;C, e 24(c)
6MA, A

3D ' _
+n,D, e )]Coszxy 7 (A + 4

The parabolic applied load at the right boundary (x = b)
can be expressed in terms of Fourier series as

o :4P(yz—ay)/a2 :E0+iEm cosay (25)

m=1

where E,=-2P/3 and E, =8P[l+cos(mz)]/m’z>. Now,
applying the boundary conditions (iii) and (iv) into Egs.
(23), 24(a), and 24(c), one can readily obtain the constant
M as

M =hP(A,+ Ay)/ 94, Ag (26)

and the following four simultaneous equations for the

determination of the four constants Am, Bm, Cm, and Dm.

n n, ny n |4, 0
R B B £ B, 0
) = @7
9 0 O 0C, 0
Rl RZ R3 R4 D m EH

where E, = _Emh(A]Z +A66)/ 4 and
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Once Eq. (27) is solved for the constants Am, Bm, Cm, and
Dm, the explicit expressions for the components of
displacement and stress can be found from Egs. (23) and
(24) which are valid throughout the entire region of the

beam.

3.2 A roller guided panel

Figure 2 shows a rectangular panel of symmetric
cross-ply laminated composite. The left lateral edge is fixed
and the two longitudinal edges parallel to the x-axis are
roller guided. The right lateral edge is subjected to a

linearly varying tensile load o =P(1-2y/a), where P is the
maximum value of the load. The roller guided edges can

freely move in the x-direction while restricted in the

y-direction. Thus, the boundary conditions are

A»‘" Fibers

Roller guided edges
% / /

: g:‘ =P(-2y/a)

X
! b !

Fig. 2 A rectangular panel of symmetric cross-ply laminated composite.

1) wx 0 =ux 0=00<x
(i) ow (x, 0) = 06w (x, 0) = 0;, 0 < x
(i) ux (0, ) = w (0, ) =0, 0<y<a

o (b,y)=0l(b,y)=P(1-2y/a);0< y<al2
@) o,(b,y)=00<y<a

The solution to the displacement potential function w(x, y)

for the panel problem is assumed in the form of

y(x,y) = X, sinay+Mc'y + Ny’ (28)

m=1

As beore, Xn is a function of x only, M and N are arbitrary

constants, and a = ma/a. The rest of the solution procedure

is the same as that of the cantilever beam problem. Thus,

following the same procedure, one can finally obtain [11]

n n, n, n |4, 0
P P P P|B 0
1 2 3 4 m =| _ (29)
9 0 O 0|C, E,
R R, R R D, 0
where

F :An"‘z _Aebaz

0 :(A“nfa+A,2a3)e"’b ;i=1,2,34 30(a)

R :(A“n‘.3 + Alzn‘.az)e”"’

—  E h(4,+4

p B, 4) o

Aﬁﬁ

4P mr

E,=——|1-cos— 30
m‘ﬂz[ 2 j } ©

The components of displacement and stress are obtained as

U= Z(n]A "™ +n,B ™ +n,C "
m 2% m 3%m
= 31(a)

+n,D,e"" )acosay +2Mx

1 < :
y=—— A (A4 e +B e +C ™"
Ry [Z{ (4, + B, +C,

+D,e")a’ — 4, (nf 4,e" +niB,e" +niC, e 31(b)

m

m=1

+n.D,€")}sin cry = 2y(4,M +34,N) }

o, = # |:2{A12 (Amenlx + Bmenzx + Cmew
h( 4y, + Age)

+Dme””)ot3 + All(nleme""‘ + ngBme"“ 32(a)

m=l

+n;C,e"" +n,D,e")a}cosay +2(4,M —34,N) J

1 [ =

o, =~ z ApAg(4,e" +B,e"" +C,e™
h( A, + Ag) { *
+ Dme"”)a‘z + (AIZZ + ApAg — Ay )("’fAmem)t

+mB,e" +nC,e™ +n,D,e"")a}cosay

m=l

32(b)

+2(A122+A|2 m_Aquz)M_6A22 ;nN}

Y ©
66 nx X n3x
o, = YRR Z[Alz(nlAme " +n,B,e"" +n,C,e"

( 12 + A66) m=1

N 3 ' 3 . 3 nx 32(c
+n,D,e" Yo" + A, (n A,e"" +n,B, ™" +n;C,e"" ©

+mD,e™ )] sinay

where M =hP/84, and N=—-hP/244, .
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4. Results and Discussion

The formulations developed in the preceding section are
demonstrated for a cantilever beam and a roller guided panel
of glass/epoxy composite in order to present some numerical
results of the analytical solution to elastic field. Here, it is
noted that the formulations can be applied to any composites.
However, the glass/epoxy composite has been selected here
merely as an example. The mechanical properties of the
glass/epoxy composite are: E1 = 38.6 GPa, E2 = 8.3 GPa, G2
= 4.1 GPa, and vz = 0.26. The maximum value of the applied
load Pis considered to be 1000 MPa. It has been verified that
the results of the series solution converge very well only for
the number of terms m = 10 in the series. This verifies the
advantage of the present approach that accurate results can be
obtained with only a few terms in the series which, in turn,
reduces the computational time and cost. However, for further
accuracy of the results, the number of terms in the series is

taken as 20to calculate all the numerical results in this paper.

4.1 Results of stiffened cantilever beam

The cantilever beam is considered to be consisted of
angle-ply laminates of 4 plies. For such a cantilever beam,
the effects of ply-angle on the elastic field (stress and
displacement) have been investigated and some representative
results corresponding to y/a = 0.25, 0.50, and 0.75 on the
lateral section x/b = 0.75 are presented.

Figure 3 shows the effect of ply-angle on the longitudinal
stress component. Near the top (y/a = 0.75) and bottom (3/a
= 0.25) surfaces of the beam, the longitudinal stress varies
significantly as the ply-angle @ varies from 0 to 45
degrees. After that the longitudinal stress remains almost
uninfluenced by the variation of the ply-angle. However, the
stress at the mid-way of the vertical section (y/a = 0.5) is
totally uninfluenced by the ply-angle. Further, it is noted
that the stress at all the points is zero for 6 = about 45
and 60 degrees. It is noted that the zero degree is the
critical ply-angle for the longitudinal stress components.

The effect of ply-angle on the lateral stress is illustrated in
Fig. 4. The lateral stress at the mid-way of the vertical section
(0/a = 0.50) is also uninfluenced by the ply-angle. However,
near the top and bottom surfaces of the beam, the magnitude
of the stress increases as the ply-angle varies from 0 to 35
degrees. Then it falls as the ply-angle further increases. For
this case, & = 37 degree is the critical ply-angle for which the
value of the lateral stress near the top and bottom surfaces is
the maximum.

0.08 p—
0.06 |
0.04 | N

¥

0.02 |

-0.02 |
-0.04

Normalized Stress, /P
o
i
|
|
|
|
|
|
|
|
|
[
|
\

|

-0.06 |-

-0.08 : : :
0 10 20 30 40 50 60 70 80 90

Ply-angle, &
A

g. 3 Effect of ply-angle on the longitudinal stress component.

0.025
0.02
0.015
0.01
0.005
0 _____________________

-0.005 | -

-0.01 F > /

-0.015 F N 7/

-0.02 | N

-0.025

[ /b =0.75

¥

Normalized Stress, o/P

0 10 20 30 40 50 60 70 80 90
Ply-angle, 8

Fig. 4 Effect of ply-angle on the lateral stress component.

Shown in Fig. 5 is the effect of ply-angle on the shear
stress component. The shear stress exhibits the reverse trend
of that of the longitudinal and lateral stress components.
Here, the stress at the mid-way of the vertical section has a
significant variation with the variation of the ply-angle. On
the contrary, the stress near the top and bottom surfaces of
the beam has a little variation with the ply-angle. In
addition, the shear stress at the points of equal distance
from the mid-point of the vertical section is the same and
6 = 34 degree is the critical value of the ply-angle.

The effect of ply-angle on the longitudinal displacement is
similar to that on the longitudinal stress component as seen
from Fig. 6. However, the lateral displacement has different
characteristics with the variation of ply-angle as shown in Fig.
7. The magnitude of the lateral displacement is the minimum at
6 = 45 degrees and its value increases as the ply-angle deviates

in either direction from 45 degrees.
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Fig. 5 Effect of ply-angle on the shear stress component.
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4.2 Results of roller guided panel

To present some numerical results of elastic field in the roller

guided panel of laminated composite, a five-ply symmetric

cross-ply laminate is considered. The six different possible

staking sequences, [0s], [02/90 s, [90/03/90], [0/903/0], [902/

0]s, and [90s] are taken into account to investigate their

effects on the elastic field.

Figure 8 shows the effect of stacking sequence on the
longitudinal ~displacement component. It is seen that the
magnitude of this displacement is the minimum when all the
plies are arranged with 0° orientation. Its value increases as the
number of plies with 90° fiber orientation increases. The effect
of stacking sequence on the lateral displacement component is
illustrated in Fig. 9 which shows the reverse characteristics of
the longitudinal displacement. The magnitude of this
displacement is the maximum for 0° fiber orientation in all the
plies. Its magnitude decreases with the increase of the plies
with 90° fiber orientation. Further, it is noted that the lateral
displacement is zero at the top and bottom surfaces of the

panel that agrees with the boundary conditions of the problem.

1.0 r—
T os "
< [0, /90,
=
£ [90/0,/90]
Z 06 [ i
£ [0/90, /0]
2 90, /0
S oal 90, /0],
S 04 [%- 1
=
£ [90.]
“ 02|
xb =05
0 ‘ ‘
0 0.004 0.008 0.012 0.016

Normalized Displacement. (11,/b)

Fig. 8 Effect of stacking sequence on longitudinal displacement component.
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Fg. 9 Effect of stacking sequence on lateral displacement component.
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Fig. 11 Effect of stacking sequence on lateral stress component.

Figure 10 exhibits the longitudinal stress component for
different stacking sequence. For any stacking sequence, the
stress varies from its maximum value at the bottom surface
to the minimum value at the top surface of the panel. The
range of variation reduces as the number of plies with 90°
fiber orientation increases. The lateral stress as a function of
stacking sequence is displayed in Fig. 11. The maximum
stress is developed when all the plies have 90° fiber
orientation. On the other hand, the stress is the minimum
for 0° orientation of fibers in all the plies. The magnitude
of shear stress is the maximum for the fibers with 0°
orientation in all the plies as shown in Fig. 12. Its
magnitude decreases as the number of plies with 90° fiber
orientation increases. For any stacking sequence, the shear
stress is zero at the top and bottom surfaces of the panel
that conforms to the boundary conditions of the problem.

Figure 13 presents a comparison of the two displacement
components corresponding to different stacking sequences. The

Normalized = Shearress. (o, /P)

Fig. 12 Effect of stacking sequence on shear stress component.
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longitudinal displacement is considerably larger than the

lateral displacement. The comparison of three stress components
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is shown in Fig. 14 corresponding to various stacking sequences.
The longitudinal stress is many times higher than the lateral

and shear stress components.

4.3 Validity of Solution

To verify the validity of the present approach to the
solution to mixed boundary value elasticity problems, a
roller-guided panel of three ply ([0/90/0]) laminated
composite is solved by finite element method using the
commercial software ANSYS. The in-plane engineering
constants [12] of the laminate are used as the material
properties for the present orthotropic panel ([0/90/0]). The
whole domain of the panel is meshed using the quadratic
8-node-82 type of element. The size of the panel considered
is 30x10mm and the total number of elements used in the
calculations is 300 (30x10). The size and distribution of
elements are uniform throughout the domain of the panel.
The convergence and accuracy of the solution are confirmed
by varying the number of elements.

Figures 15 to 19 compare the analytical and finite element
solutions [11] of different components of and stress displacement
at different sections of the panel. It is seen that both the
analytical and finite element solutions agree very well with
each other. The maximum difference is found to be 2.7%
for the shear stress component (Fig. 17) at y/a = 0.3 of the
section x/b = 0.9. This small discrepancy in the results is
attributed to the error in numerical calculations by finite
element method. This verifies the validity of the present

analytical solution based on the displacement potential

approach.
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Fig. 15 Comparison of analytical and finite element solutions of longitudinal
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5. Conclusions

A method has been discussed for the analytical solution
to elastic field in structural elements of composite materials.
The outstanding advantage of the method is that the solution
of the two dimensional elasticity problems requires finding a
single parameter, called displacement potential function, from
a single differential equation as one of the equilibrium
equations is satisfied automatically. Also, the method is
applicable to any modes of boundary conditions, whether
they are prescribed in term of stress or constraints or any
combination of these. The numerical results obtained for two
different structural elements of composite materials establish
the fact that the method is simple and, at the same time,
capable to produce exact analytical solution to elastic field
in structural elements of composite materials under any
modes of boundary conditions. The comparison of analytical
and finite element solution justifies the wvalidity of the
analytical solution.
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