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Generalized Plane Deformations of a Laminated Composite Strip

on

Containing a Delamination Crack

Taewoan Kim* and Seyoung Im*

ABSTRACT

Based upon Lekhnitskii’s formulation and Stroh formalism for plane elasticity theory of an
anisotropic body, the asympototic solution is examined for a delamination crack in a laminated
composite strip undergoing generalized plane deformation under extension, bending and/or
torsion. The near-field conditions for the opened and the closed delamination crack are imposed,
together with the eigenfunction expansion for the displacement potential, to lead to the structure
of solutions which consist of homogeneous solution and particular solution. It appears that no
logarithmic solutions exist, regardless of the ply orientations, for each of an opened and a closed
crack, and thus power type homogeneous solution and the polynomial type particular solution
turn out to be valid.
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1. Introduction

Deformations of a laminated composite inher-
ently involve a boundary layer region on which
deformation field is locally distorted owing to
material of geometric discontinuity such as ply
interfaces, free edges, cracks or cutouts. Gene-
rally, the difficulties involve local stress singula-
rities and inherently three-dimensional state of
complex stresses. Moreover, the high local
stresses and associated deformations caused by
these geometric and material discontinuities always
result in undesirable delamination and transverse
crack initiation and growth, leading to the final
fracture. Therefore, development of an analytical
method that can provide insight into a boundary
layer region under general loadings is of foremost
important to the analyst. The interfacial or
transverse crack problems and free edge problems
are among typical examples concerning boundary
layers in mechanics of composite laminates, and
they have been among the subjects under intensive
investigation during the last two decades.

Suppose a long laminated composite strip is
subjected to lateral tractions or/and end tractions
such that stresses and strains on every cross
section remain unchanged along the length of the
strip. Such a deformation is called a generalized
plane deformation[1]. Typical examples of this
class of deformations include uniform extension,
pure bending, torsion and a combination of these
modes as well as the well-known generalized plane
strain deformations.

From the theory of anisotropic elasticity
Lekhnitskii developed complex potentials to treat
the generalized plane deformation of an anisotropic
strip under general loadings such as uniform
extension, bending, torsion or any combination
and Choil2]

Lekhnitskii’s formulation to obtain the solution for

of these. Wang employed

a free edge problem under extension. Subsequen-
tly Wangl[3] obtained the solution for a delami-
nation crack under extension in a similar method.
In these works. the particular solution for stresses
was assumed to be polynomial functions in the
beginning, finally reduced to a constant for uniform
extension. On the other hand, Zwiers et al.[4]
found, based upon the Stroh formalism[5], that
there may exist the logarithmic particular solution
for stress in free edge problem under uniform
extension. This result indicates that the assump-
tion that a particular solution for stress takes a
polynomial functions under complex general
loadings other than simple extension is an open
questions. Unfortunately, no complete solution
other than uniform extension has been reported
up to date, although the solution is of paramount
importance in association with the understanding
of fundamental fracture behavior of composite
laminates under more general loadings.

In this paper, we examine the asymptotic
solution near the delamination crack tip in a
laminated composite strip subjected to the general
loadings such as extension, bending and torsion.
For this, we rely upon Lekhnitskii's formulation
and Stroh formalism, which have been found to
be useful for calculating the asymptotic solution
for the free edge problem under uniform exten-
sion[1,4].
extended to the general cases of loading including

This solution procedure is here

bending, torsion. as well as extension.

In section 2.1, the problem under consideration
is described, and then based upon Lekhnitskii's
formulation and Stroh formalism under generalized
plane deformation, the solution form for stress
and displacement field is obtained, and the

asymptotic solutions from the eigenfunction
expansion are presented. In section 2.2, the
near-field conditions for the opened and the closed

delamination cracks are imposed to lead to the
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structure of solutions which consist of homogene-
ous solution and particular solution. The asymp-
totic form of homogeneous solutions for stress and
displacement, including the stress singularity is
In section 2.4,
existence of the polynomial type particular solution

determined in section 2.3.

in composite laminates subjected to aforemen-
tioned general loadings under generalized plane
deformation is investigated, and numerical results
and discussion are followed in section 3. Finally
concluding remarks are made in section 4.

2. Formulation of the Problem

2-1. Generalized Plane Deformation

Problem
Consider a laminated composite subjected to

general loadings such as extension, bending and
iorsion (see Fig.1). Each ply of the composite
laminates lies in a plane parallel to the x;—%j
plane, and the ply orientation 8 is defined to be
the counter-clockwise angle, viewed from the top,
that the fiber direction makes with the xgz-axis.
We assume that the laminate dimension in the
x3 direction(laminate width) is sufficiently large
compared with the laminate thickness so that the
laminate is assumed to be in the state of gene-

Fig. 1. Delamination crack problem under
general loadings such as extension.
bending and torsion.

ralized plane deformation on the x;—-x; plane
under the aforementioned loadings[1].

Let uj, & oy denote the Cartesian components
of displacement, strain and stress, respectively.
For generalized plane deformation, we have the
governing equations:

equilibrium equation:

0;,;=0(no body force) -eweereeere (1.a)
strain-displacement relation:
aij=<ui.j+uj,i)/2 ........................ (1.

stress-strain relation:
oij=Cijkeexer  Cijie=Ciike=Cpeij == (1.0
where Ciyy are 4-th order stiffness tensor, and
the comma indicates the partial differentiation with
respect to x;. Introducing the “collapsed” repre-
sentation, we may write the stress-strain relation
as
G; :Cijaj . g :Sijﬁj ........................ (2.a, b)
where
{01, 02: 03, 642 G5 06}T:

{611, G99y 033+ G923 T13s G]g}T (2- C)
{615 €2» €30 €40 5 €5} =
{811’ €22» €33y 28239 2813, 2812} L TR (2. d)

and Cjj and Sj are the stiffness and the compliance
matrix. We supposed the loadings of extension,
bending and torsion, only, which result in the
state of generalized plane deformation in the
composite strip, and make the problem two
dimensional. When these loadings are applied to
the composite strip, from the constitutive equa-
tions and compatibility relation the displacement

component u; may be given as in [1,2]

U (X1» Xo0 x50 = Uj (xy, X9) + 853 (—Agxg™/2-Agxtoxy)
+ 8i(~Agxs™/2~Agxyxg)
+ 6i3("A2X1+A3X2+A1) X3 "ottt (3)

where & is the kronecker delta, and A; is para-
meter related to axial extension along the xg—axis,
A; and A; to bending in the x;—x3 planes and the
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x9—X3 planes, respectively, and A, to torsion along
the xz—axis. For convenience of later develop-
ment, we write Uj(xy,xy) as

Ul (X19 Xz) = fjx (Xl’ XZ) -+ }\'ixlz/z ............ (4)

where A; are constants to be determined from
equilibrium equation. The displacement u; with
equation(4) can be rewritten as:

0 (xpp Xov ) = U (o) + A3 %2 +
6i1( *AngZ/Z“A4X2X3> + 6i2 ( "'A3X32/2 “A4X1X3)
+ 5i3(-A2X1+A3X2+A1)X3 .................. (5)

Substituting equation (5) into equations (1.a)-
(1.¢), we have

Gij(XI' Xg) = (CijgsA4 + Cij33A2 )Xl
+ (CijgaAs ~ CijzAg )%
+ Gz Ay + Ciah kX1
+ [CijklaUk /9%1 + CiadUx /oxy 1 - (6)

Gi.i= (CiozAq + Cizzshs ) + (CizgsAs — CizizAs)
+ Capihx + [CumqZUk Jox}
+ (Cinz + Cipi) 9°Ux /95105
+ Cigp 02U /x5 J=0 roveesmemeneenens 7

From equilibrium equation (7), we obtain the
following two sets of equations for Ay and
U; Gy x0)

(CigzAg + Cizaz ) + (CigasAs — CizisAy )
+ Cilkl}\ = Q crrereeressreseneeens (8. a)

Cind®Ux /6Xﬁ + (Ciz *+ Cia) 07Uy /0%10%2
+ Cigia a2Uk/aX§ J=Q  cereneeeeeenens (8.b)

We can determine A ; related to A, Az and A, from
equation(8.a). Following Stroh[5], we can show
that the general solution of equation (8. b) takes
the form as

R 6
Ui (xpp x0) =Z Vik (z),
=X F Ky (k=16) coeeeeeee )

where yy are the eigenvalues to be determined,
and f(z) is a function of z,. Substituting equation
(9) into equation (8.b), we obtain the equations:

Di(IVj=0 weereeseesemsee s (10.2)
where
D;i(u) = Cur+ M Cinja+ Cigg) + 113 Cigg *+ (10.b)
For the existence of nontrivial solutions, we have
det[Dyl= | Dyl =0 weeeeeemseemsennmsiens (11)

and the solutions of this sextic equation yield the
three pairs of complex conjugate eigenvalues[5]

y = Hk+3’ (k=l,2,3) .................. (12_ 21)

and three pairs of associated eigenvectors vy, can
now be obtained from (10.a) through a proper
normalization and satisfy the following equation

Vitk+3) & -{;lk s (k‘_‘lv 2, 3) """""""" (12. b)

In this work we assume that the eigenvalues py
are distinct. A discussion of the cases when
has a multiple root can be found in [6]. Equations
(5) and (6) for displacement and stress with
equation (9) can then be written as

6
u; (X4, %o Xg) =k§1Vik f(z) + u; * (x1, %p0 x3) - (13}

6 df(z)

y =% g KL )
oi(x1, X2) I ik s + o™ (xp5 %0) (14)

where
= (Cijir + mCijie) Vi
(no sum on k, k=1~6) - (15.a)
0% (xp oo Xg) = A %1 %2 + 8y (= Agxs%/2~Agxoxs)
+ Siz( “‘A3X32/ 2 +A4X1X3)
+ 8i3 (A2X1 +A3X2 +A1) Xg UUUTC

6

Gij* (Xp Xg) = k§1+ Cijklx kX1
+(Cip3Ay + Cijs Az ) x1 + (CiggzAs — Cijnshy )xp
+ CijBBAl .................................... (15_ C)
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We assume the power type eigenfunction for f(zy)
as given by [2,7]

20 =Z Cr®* /(3. +D  (k=1~6),
o=
............... ( 16)
which leads to the expressions for the displacement

and stress field

uj (Xp X2y X3) = Ui (le Xg) +Ui* (Xp Xgs X3>

............

where
- w 3
Ui (Xl, X2)= zZ =z [Cknvikzkan—i—l
n=1k=1
*+ Caeran Vaidn 1 1/(1+8,)
- w 3
oij(x1 %) =Z z [Cunmiicaid® + Coeapn Tyein)
and an overbar denotes the complex conjugate;
Cin and Cg43yn are complex constants, and the
subscript k means the three pairs of eigenvalues.

Here the eigenvalues §, are to be determined from
the so-called “near-field” conditions, including the

traction conditions and interface continuity con- -

ditions. The coefficient Cy, is dependent upon the
associated eigenvalues 8, and it can be deter-
mined within an arbitrary constants when §, is
obtained.

Using the polar coordinates (r,$,2), z, may be
written as

= Xt Wy = I e (18.2)
where

{k=cosd+ysing
Equations (17.a) and (17.h) are then rewritten
as follows

5n+1 © 3 S +1
U4 (X1, X9y X3) = 1 z z LCinviglyn
R

=08 +1
+Coramn Vil " J/(1+8) + u; * (x5 x00 %5)

(19.2)

e
material 1
Cj, 6 )
Crack s i /
WA
X3 Interface /
~ Material 2 /
C;.80

Fig.2. Delamination Crack in Composite
Laminates.

Sn o 3
oij(x1,%p) =1 Zz z [Crpipidn
+ Clk+3m 'fijkgk&"] + " (X xg) e (19.1)

These expressions may be written for each ply
of laminates, for example, the upper ply and the
lower ply; in which case we use the above ex-
pressions for the upper ply, and the following
“primed” expressions for the lower ply(see Fig.2)

. O T N
y; (x1, Xos Xs) =1 El }\El [Cknvikg: "
n=1k=

. .8+ .
+ Cotam Virlk lj/<1+6n) +u; " (%3, x50 X3)
(20.a)

. 5 ® 3 ;e .
cij(le X)) =1" n§1 1\21 [CkntijkaS"

, - ="5 e
+ Clie+3)n Tijil T+ O * (xprxg) =ooee (20.p)

2-2.. Solution Structure under
Generalized Plane Deformation

To determine the structure of the asymptotic
solution including the stress singularities, we need
to consider the near-field conditions. Assuming
the two plies are perfectly bonded along the in-
terface, the near-field conditions may be written
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as :
traction condition:
O13=092=093=0 at ¢==+n
if crack faces are opened ‘---+-r 2D
or
612=625=0, [ugl=[o0p]=0 at ¢=+n
if crack faces are in frictionless contact

............ ( 22)
interface continuity condition:
Lopd=losl=Lom]=0
and
Luyd=lugl=[uzl=0 at ¢=0 -+ (23)

where [.] indicates the discontinuity of the quan-
tity in it across the ply interface. Substituting
equations (19.a) and (19.b) for displacement and
stress into near-field conditions, we obtain a
system of 12X12 nonhomogeneous linear equations
for Cupr Ctgyne Cior and C('k+3)n, which can
be written as

PR (8, g=A by +r(Ashy+Asby+Ab,) o (24)

where K. is complex valued square matrix whose
elements depend upon 8, and by, by, bs, by are
constant column matrices related to material con-
stants, and q is a column matrix whose elements
are Cyps Cirtamne Ck;, and C('k+3)11(k=1,2,3>.
To satisfy equation (24), we let 8,=0 and §,=1:

K(:(O) qpl =A1b1 .............................. (25_ a)

Kc( 1) qu = Agb2+ A3b3+ A4b4 ............

and obtain two particular solutions for q,q"! and
q"2. The particular solution g™ is related to the
parameter A;, and g2 to Ay, A and A,. This is,
however, not the only solution for q in equation
(24). We see that q has the following homoge-

neous solution
I{(:(an) qh=0 .................................... (26)

Therefore, the complete solution takes a linear
superposition of the two:

qzqh_*_qp, u=uh+up ............... (27. a, b)
where
quqpl + qu u=1h, up:«_fjp +u®.

2-3. Homogeneous Solutions

For the existence of nontrivial solution from
equation (26), we have

[ Kc(sn) ’ mm()  eeeerrreecesarsiatiieireaineonens (28)

which determines the eigenvalues §,;, When the
eigenvalues §,, are known, within unknown con-
stants the eigenvectors ! are computed from
equation (26) by a proper normalization. The
asymptotic form of homogeneous solutions for the
stress and displacement are given by

~ w 3
Uih (%, x9) = uih (xpx9) = El 1\21 [CknvikaS"«}.l
n=1k=

+ Crerpn Vazion T 11/ (1+8,)  woeeeees (29)

3
h _ . 8 - =5
oij (x1 Xp) =z Z (CrnTiizic ™ * Cic+3ym TijkZic "
............... (30)

From the structure of K.(8,), we can show that
if 6, is a root of the characteristic equation, so
is its complex conjugate 3, and there exists
appropriate relation of complex conjugate in Cyy
50 that the expressions (29) and (30) for the stress
and displacement become real.

The power type eigenfunction expansion{(16)
fails to be complete when the algebraic multiplicity
is greater than the geometric multiplicity, that is,
there are not enough sets of the power type
eigenvectors associated with these multiple eige-
nvalues[6,8]. Dempsey and Sinclair[8] resolved
this difficulty by introducing logarithmic eigenfu-
nctions, which ensure the existence of the sets
of eigenvectors enough to span the solution. Sub-
sequently this was extended to the problem of
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anisotropic composite laminates by Ting and Chou
[6]. The existence of the logarithmic eigenfunc-
tions can be examined by calculating the algebraic
multiplicity of the eigenvalues and the rank of the
associated coefficient matrices in equation{28).

To take only the real part of equations (29) and
(30), we may introduce

Cin=1/2(y1,—1¥2p) by for complex 3,
Im[§,1>0
Cin=1/2(ygabyyy) for real §; --------- (31.a,b)

where by, is the solution for equation(26), com-
puted by a proper normalization, and Yy, Yo
and ys, are normalization constants to be deter-
mined to complete the solution. The equations
(29) and (30) for displacement and stress are then
written as

~ w0
UP Gpxe)=uP (xppx0) = z Qui»
=

Gi}n(xl, XZ)= 2_:1 Pm} ............... (32. a, b)
e
where Qu; and Py; are given by :

Qni = 'YlnRe[‘I'ni J+yanIm{ ¥y 1,
Pyij = YinRel ol +vznImlg;]

3
\I/nizk§1[bknvikzk6"+ H+ bocrgn Tain 11/ (1+8,)

w

_ 5 - =8
nij = 2, Cbyntijizic ™ + becet-an Tk "

when &, is complex;

3
Qui = ygnRe[kglbknvikzkﬁn“/(l+6,,>]
3 5
Py = YB“Re[k§1 DynTijizi "
if &, is real.

2-4. Existence of the Polynomial
Particular Solutions

To obtain the particular solutions for stress and
displacement when §, is real, we may choose
eigenvector Cy, as

Cknz% (akn_.iékn) .............................. (33)

where a, and 2, are real. Equations (19.a) and
(19.b) then have the real expression

5n+1 @ 3 S 1
uj (Xl, Xo» X3) =1 21 1.21 [aknRe(Vika n )
n=1k=

- 8,
+ aknlm(vikck “+1) ]/(1+8n) + u; * (X19 Xos X3)

............... (34)
5. ® 3 N
oij(xpx) =1 " z z LagaRe (o)
+ Eqmlm ('Cijqusn)] + Gij* (xpp %) oeeeees (35)
For convenience, we set
P Aa A
al= {310’ Aaps Azps A10s Q200 A30» & 100 A 200 A 300
5'109 5'20’ 5'30}'3’ ......... (36)
P Aa A
a 2={ayy, ag;» a3), a1y, 391, 431, 211> @215 A3
TR0 | 37)

Equations (25.a), (25.b) and (26) are then
replaced by

K(O)aPl=A1b1 .............................. (38. a)
K(Da 2=Agby+AgbgtAgby  wweereeees (38.1)
K(Sn)ah S} eeeseeeseeeeeaneeeeeeee et (39)

where K is now a real valued 12X12 square
matrix, and a” is a real valued 121 column matrix
whose elements are aup agy xw A1 k=1,2,3). If
Ag, Az and Ay are equal to zero. Ay is also equal
to zero. We will now discuss the solution of
equations (38.a) and (38.b). Since 8,=0 and
8,=1 are the roots of the equation(39)[7], a so-
lution a'! and a'2 in equations (38.2) and (38.b)
exists if and only if
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Sg ° (A2b2+A3b3+A4b4) =0
where s, and s, are an eigenvector of K'(0) and
K'(1), respectively,

K0) 8,=0, K1) gy=0 =roreeeee (41.a,b)

3. Numerical Results and Discussion

In this section, we choose one typical material
for example to examine the homogeneous solution
for delamination cracks, and numerically confirm
the power type eigenfunction by checking the al-
gebraic and geometric multiplicity. Next we exa-
mine a particular solution and check whether the
polynomial type particular solution exists or not.

For the purpose of illustrating a particular so-
lution, we consider a case wherein each of the
loading parameters Aj, Ag, Az and A, is applied
alone, respectively. A solution for a general loa-
ding may be obtained from a linear combination
of the solutions for these four cases. The special
cases of AjbytAzbz+Asby=0 are excluded here.
In each case, equations (40.a,b) and (41.a,b)
are then rewritten as follows

51°b1=O , S 'b2=0 ................. (42.a,b)
Sy ‘b3=0 , Sy 'b4=0 .................. (42.C,d)

where s, and s, are eigenvectors of K(0) and
K1),

K% 0)8,=0, K1) s,=0 -eeeeeee (43.a,b)

We recall that by, by, bs and by are column matrices
related to loading parameters Aj, A, Az and Ay,
respectively.

For numerical computation, we use the following
material data for the graphite epoxy T300/5208[9]

EL = 134GP3., ET = EZ = 10.2GPa
GLT= GLZ= 5.52GPa, G"I‘Z: 3.43GPa

VL= Vi z= 0.3 , V7= 0.49 eevreeerens (44)

Using this data, the eigenvalues yy, (k=1~6) and
the associated eigenvectors vy, are obtained from
equations (11) and (10.a). The values of tj and
A are then obtained from equations (15.a) and
(8.a). From these results, we can finally calculate
K(0), K(1), by, by bg and by, The major eige-
nvalues are tabulated in Table 1 for each of the
opened and the closed cracks.

Table 1. Eigenvalues &, in homogeneous solu-
tion (n=0,1,2,3)

eigenvalues

n—1/2 (single root)
opened crack | n (triple roots)
(n=1/2)+ iy (single root)

n-1/2 (double roots)
n (quadruple roots)

closed crack

v - oscillatory index

i=y/~1

From the computational results, it turns out that
for all of the ply orientations, there are three
eigenvectors of K(0) and K(1) for the opened
crack problem, respectively, while there are four
eigenvectors of K(0) and K(1) for the closed crack
problem, respectively. The algebraic multiplicity
for each case is 3 and 4, respectively. Thus it
appears that the existence of logarithmic homo-
geneous solution is excluded for either case, and
the assumed power type eigenfunction equation
(16) is valid.

In order to check the consistency conditions
(42.a~d), the three eigenvectors for K'(0) and
K1), are calculated for an opened crack, and
similarly the four eigenvectors for a closed crack.
For each of these two cases, it turns out that the
consistency conditions(42.a~d) are all satisfied
by every set of an eigenvector regardless of any
combination of ply orientations. This means that
the power type particular solutions exist for all
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of the fiber angles under typical loadings such as
extension, bending and torsion. Therefore, for
an opened crack problem equation (38.a) has a
particular solution a*v and three arbitrary solution

a™(m=1~3), and equation (38.b) has a par-
ticular solution 2% and three arbitrary solution
a®™ (n=4~6). On the other hand, for a closed

crack problem, equation (38.a) has a particular
rp

solution a and four arbitrary solution a(m)(m
=1~4), and equation(38.b) has a particular so-
lution a( 2 and four arbitrary solution a(") (n=5
~8).

at= al 4 a2 e, (45)
where

Pr o a(Pl) + ala(1)+ aza(2)+ asa(a)

an — a(Pg) + a4a(4) + (1.5&(3) + 0.56.(6)

if crack faces are opened

P 1 ) ( )

Al = a(l P - ala( ) . aga(z + oza 3) . %a(‘i
p 7 8

an - a(! ) . asa(S) + asa(ﬁ) 4 a7a(l + aga )

if crack faces are in frictionless contact

(Py) (Pp)

where a~* and a are the solution vector of

smallest length la"" 1 and 1a"1, respectively, and

are the ho-
(n)

a; are arbitrary constants, and a™
mogeneous solutions in equation (38.2) and a
are the homogeneous solutions in equation (38.b).
Substituting equation (45) into equations (34) and
(35) with 8,=0 and 8,=1, we obtain the particular
solution as

83 6 .
uP = o 4 PP 4 z @ W04 % g D
k=4
............... (46)
k. (&
GijP GgPl) + O_(Pz) E cSl(} )+ Z ak ; 1
if crack faces are opened - 4D
up = Ui(Pl) (Pg) Z (a 0) 2 Clkui(k' D
k=5
............... (48)

3
p ®ry) (Po) (k. ) (k D
Gij G)J ! + G ? + Z kcij E
if crack faces are in
frictionless contact *-+ (49)
where
Py 3
u o= ElEam Re (v zi) + g Im(v,k 7)1
+ 8iArxs
(n.0 3
U = 1\2 [ako Re(vlk Zk)+ 3}@ Re(V,]\ Z!\)]
( 4 a
oV - z EN 07 Re(ry) + aig? Im(rg)]
+ Cisz A
3
(m,0) (m) ~(m)
o= kél[ako Re(tijk)+ kg Im("CijkxJ

m=1~~3 for an opened crack
{m=1~4 for a closed crack

3
u'? = =Zzla [a? Re(vik 2)+ a? Im(vy, #)1/2

SiaArxy

+ul (Xl,xg,X:g) -

3
ui( U =zla [a 15 Re(vy )+ as Re(vy z8)1/2
(P ) _ ~(p
2 Z [ Re(tijkzk)'i" akllz) Im(t;jkzk )1/2
+ Glj* (le Xg) - Cijgg A]
002 % L Releya)+ A% mCegn )]
o = Z b Relo a“ Im Tk

n=4~6 for an opened crack
{n=5~8 for a closed crack

So far we have used Lekhnitski’s formulation
and Stroh formalism to determine the structure
of the complete solution and investigate the ex-
istence of the polynomial type particular solutions.
From equations (46) and (47) or equations (48)
and (49), it turns out that the polynomial type
particular solutions for displacement and stress
take quadratic and linear form, respectively.
These equations are consistent with general forms
of the particular solutions for uniform extension

which was studied by Wang[3] based upon
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Lekhnitskii’s complex potentials.

In this example, no logarithmic solutions appear
in the homogeneous solution, neither in the
particular solution, regardless of ply orientations.
Although numerical verification is limited to one
example of material here, our experience shows
that this result is valid for most of the composite
materials including graphite epoxy, boron epoxy.
If one want to confirm this, he may follow
foregoing procedure to verify this for a specific
material.

This asymptotic solution may be combined with
some numerical technique such as the boundary
collocation method[2] or the singular hybrid
F.E.M.[10]. Without knowing the asymptotic
solution structure a priori, particularly without
knowing whether there exists any logarithmic
singularity or not, one cannot expect his numerical
results to be accurate enough. This was illustrated
for free edge problem by Stolarski and Chiang
(11]. The same would go for the delamination
crack problem.

4, Conclusions

The asymptotic solution (homogeneous and
particular solutions) for delamination crack in a
laminated composite strip undergoing a generalized
plane deformation under extension, bending and
torsion was examined based upon Lekhnitskii's
formulation and Stroh formalism. For both of the
opened and the closed, no logarithmic solutions
appear in either of homogeneous and particular
solutions, regardless of ply orientations. Thus the
power type eigenfunction expansion is valid for
a homogeneous solution, and the particular
solution takes a polynomial function for the
loadings considered here-extension, bending and
torsion, whether the crack faces are opened or
closed.
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