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Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete
Bridge with Elastic Intermediate Supports

Duk Hyun Kim', Bong Koo Han"™

ABSTRACT

A method of calculating the natural frequency corresponding to the first mode of vibration of beams and
tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and
reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span
continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents
either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators
for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to
obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for
this purpose, in this paper. The influence of the modulus of the foundation and Dz, Dy Dss stiffnesses on the
natural frequency is thoroughly studied.
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1. Introduction stiffness of the slab by means of obtaining the natural

frequency. By comparing the in-situ stiffness with the one

The problem of deteriorated highway concrete slab is very  obtained at the design stage, the degree of damage can be
serious all over the world. Before making any decision on estimated rather accurately.

repair work, reliable non-destructive evaluation is necessary. Recently, use of polymeric bridge supports has become

One of the dependable methods is to evaluate the in-situ  quite popular. Unlike the metal hinges and rollers, these

*+ Alg Addga Fz2F e, wA A ZAHE-mail:yamcha@komet.net)
o Ag Addsta FEFen



24 HEE R

B SRR g

polymers behave like elastic supports. The actuators for the
active control of the bridge behave, at least partially, as the
elastic supports. The reinforced concrete slab can be assumed
as a special orthotropic plate, as a close approximation,
By, Dy and Dy
stiffnesses are negligible. The senior author has reported that
[a/B],,
la/Blal,, [a/B/BlalalB),, and [a/B/B/r/alalBl,
with g=—pg and y=(° or 9¢°, and with increasing r,
By, By, Dig, and Dy

stiffnesses, where o, g, and  are the fiber orientations in

assuming that the influence of B,

some laminate orientations such as

have decreasing values of

degrees measured from the laminate axes, positive in the

counterclockwise direction. r is an integer, and B; and Dy

are the bending-stretching coupling stiffness matrix and the

flexural = stiffness matrix, respectively. D, expresses the

relation between the stress couples, jJ7., and the curvatures,

i
x5 By relates ). to the mid-surface strains, &y; and the

in-plane stress resultants, N; to x; By and B, cause

bending-shearing and stretching-twisting coupling. D, and
D, cause bending twisting coupling. Such laminates given

above may be very useful when one tries to apply the
advanced composite materials to new constructions such as
building slabs, bridge decks, and so on. One can obtain the
advantages of the advanced composite materials using
simplified equations.

For such laminates, the three partial differential equations

for the laminate bending,
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can be reduced to one equation, for the special orthotropic
plate,

5 5 8w _ 4
D, ot +2D; P +D, ayt a(x,5). 4)

where D,=D,,, D,=Dy, Dy=(D;,+2Dg).

However such plates will have different stress distribution
through each ply of the laminate, quite different from the
"real" special orthotropic plates.

Several materials should be tested to find out the best
type of materials for the future bridge decks, especially
advanced composite bridge decks. Such plates are subject to
the concentrated mass/masses in the form of traffic loads, or
the test equipments such as accelerator in addition to their
own masses. Analysis of such problems is wusually very
difficult. Most of the civil and architectural structures are
large in sizes and the number of laminae is large, even
though the thickness to length ratio is small enough to allow
to neglect the transverse shear deformation effect in stress
analysis. For such plates, there are enough number of fiber
orientations for which theories for special orthotropic plates
can be applied, [1,2] and simple formulac developed by the
senior author can be used [3,4]. )

In case of a laminated composite plate with boundary
conditions other than Navier or Levy solution types, or with
irregular cross section, or with nonuniform mass including
point masses, analytical solution is very difficult to obtain.
Numerical method for eigenvalue problems are also very
much involved in seeking such a solution.

The basic concept of the Rayleigh method, the most
popular analytical method for vibration analysis of a single
degree of freedom system, is the principle of conservation of
energy; the energy in a free vibrating system must remain
constant if no damping forces act to absorb it. In case of a
beam, which has an infinite number of degrees of freedom, it
is necessary to assume a shape function in order to-reduce
the beam to a single degree of freedom system [5]. The
frequency of vibration can be found by equating the
maximum strain energy developed during the motion to the
maximum kinetic energy. This method, however, yields the
solution either equal to or larger than the real one. Recall
that Rayleigh's quotient =1 [4, pp. 189~191]. For a complex
beam, assuming a correct shape function is not possible. In
such cases, the solution obtained is larger than the real one.

A simple but exact method of calculating the natural
frequency corresponding to the first mode of vibration of
beam and tower structures with irregular cross-sections and

attached mass/masses was developed and was reported by
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Kim, D. H. in 1974. This method consists of determining the
deflected mode shape of the member due to the inertia force
under resonance condition. Beginning with initially "guessed"
mode shape, "exact" mode shape is obtained by the process
similar to iteration. Recently, this method was extended to
two dimensional problems including composite laminates, and
has been applied to composite plates with various boundary
conditions with/without shear deformation effects and reported
the Eighth

Materials

at several international conferences including
Congress(1990) and Fourth

Congress(1996) of American Society of Civil Engineers.

Structures

In this paper, the result of application of this method to
the subject problem is presented.

2. Method of Analysis

2.1 Vibration Analysis

In this paper, the result of application of this method to
the subject problem is presented:

Since the method of analysis used for this paper is given,
in detail, in the senior author's book [4], it is not repeated
here.

2.2 Finite difference method

The method used
influence surfaces.

in this paper requires the deflection
Since no - reliable analytical method is
available for the subject problem, F.D.M. is applied to the

governing equation of the special orthotropic plates,

2w _w o A
D, PY] +2D; 352957 +D, 3y
_ _ 2w 9w w
=g(x,y) — kw+ Nx 3 + Ny 9y +2Nxy axy 5)

where D, =D,,, Dy=Dy, Dy= (D, +2Dg).

The number of the pivotal points required for the forth
order derivatives in the case of the order of error A2, where

Ais the mesh size, is five for the central differences. This
makes the procedure at the boundaries complicated. In order
simultaneous

to solve three

differential

such problem, the partial
equations -of equilibrium with three dependent
variables, w, Mx, and My, are used instead of equation (5)

with N, =N,=N,=0 [6,7].
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If F.D.M. is applied to these equations, the resulting
matrix equation is very large in sizes, but the tridiagonal
matrix calculation scheme used by Kim, D. H [6-9] is very
efficient to solve such equations.

In order to F.D.M,
[A/B/A], type laminate with aspect ratio of a/b=1m/lm=1

confirm the accuracy of the

is considered. The material properties are :

B, = 67.36 GPa
vy = 0272,
Gp = 3.0217 GPa,

E, = 8.12 GPa
vy = 0.0328,

The thickness of a ply is 0.005m. As the r increases,
Byg, By, Dys, and D, decrease and the equations for the
special orthotropic plates can be used. For simplicity, it is
assumed that A=0°, B=90°, and r=1. Then p, =18492.902
Nm.

Since one of the few efficient analytical solutions of the
special orthotropic plate is Navier solution, and this is good
for the case of the four simply supported edges, F.D.M. is
used to solve this problem and the result is compared with
dx=a/10=0.1m,
Ay=b/10=0.1m. The deflection at (x,y), under the uniform

the Navier solution. The mesh size is

load of 100 N/m?, the origin of the coordinates being the
corner of the plate, is obtained, and the ratio of the Navier
solution to the F.D.M. solution is given in Table 1.

Table 1 Deflection ratio of Navier solution to F.D.M. solution

Navier / FD.M

x(m)
y(m)
0.1 |0.1005946E+01|0.1004916E+01|0.1004713E+01 0. 100491 6E+01 |0.1005946E+01

0.1 03 05 0.7 09

0.3 [0.1001279E+01 |0.1000028E+010.9996814E+01 |0.1000028E+01 |0.1001279E+01
0.5  |0.1000134E+01|0.9989528E+01 [0.9985780E+01 | 0.9989530E+01 [0.1000134E+01
0.7  |0.1001279E+01|0.1000028E+010.9996815E+01 | 0. 1000028E+01 [0.1001279E+01

0.9  [0.1005%46E+01 |0.1004916E+01 [ 0.1004714E+01 | 0.1004916E+01 {0.1005%46E+01
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Calculation is carried out with different mesh sizes and the DIt D22
) T T L6cn 45cm
maximum errors at the center of the plate are as follows: N = v s L 745
&5cn €0.4cn 65cn| % 1[ 57.55cn
e e e I I i A A
10x10 case : 0.14% 20%20 case : 0.035% cover N as=9-032-7047cr% cover N as=7-Des-35.47ch
40x40 case : 0.009%

The error is less than 1%. This is smaller than the predicted

eITorS;

(419)?=(0.1)*=0.01=1%
(d5)?=(0.05)2=0.0025=0.25%
(4,)%=(0.025)2=0.000625= 0.0625%

3. Numerical Examination

3.1 Structure under Consideration

3.1.1 Bridge Outline and the Loading
The bridge considered is as shown in Fig. 1.

simple free

ju / /
Y/ free

[ 4 Y
10m m 10m [D’ 10m

Fig. 1 Three span continuous slab bridge.

simple

The location of the truck loading is as shown in Fig. 2.
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Fig. 2 Location of truck loading.

3.1.2 Reinforced Concrete Slab

Fig. 3 shows the cross section of the
width.

O =210kg/cm® = 20.5942926 MPq and E_=15000V o,

=21.317118060 GPa.
Poissons ratio pj, =y, =(.18 for concrete.

slab with unit

Fig. 3 Cross section of the slab with unit width,

Three different concepts are adopted for obtaining the
stiffnesses, Dy For all cases, the effect of the bending

extension coupling stiffness, B, is assumed as negligible.

i

Case 1. Balanced design using the transformed area for steel in
calculating the moment of inertia of the cross-section.

Case 2. With E, = 15000Vo,, = 21.317118060 GPz and

E; = 199.92 GPa,

Qu:Ec/(].—uﬁz) and steel

formulas for D, are used.

and with  concrete

Q, =E,, the typical

Case 3. Using the cracked section concept by the maximum
moment, the moment of inertia of the cross section
is obtained to calculate Dy

Table 2 shows the flexural stiffnesses of three cases.

Table 2 Flexural stiffnesses of three cases (N-m)

Case Case 1 Case 2 Case 3
Stiffness
Dy, 351761502.8 | 323428383.7 | 323416426.7
Dy, 155665708.1 151828300.8 151827047.8
Dy, 90690632.4 90690632.4 90690632.4
Dgg 206573097.2 | 206573097.2 | 206573097.2

For all cases, the uncracked section is used to obtain D66

2.5t/ m*x0.65m= 15925 Pa.
The deflections at the wheel load points for three cases,

and the concrete self-weight is

when the molulus of foundation, k =14,505 x 10° N/mz, are

given in Table 3.

Table 3 The deflections at wheel loading points for three-cases (unit:m)

Case
Load Pam Case 1 Case 2 Case 3
1 0.2786E-03 0.2955E-03 0.2955E-03
2 0.2314E-03 0.2458E-03 0.2458E-03
3 0.2132E-02 0.2300E-02 0.2300E-02
4 0.1901E-02 0.2054E-02 0.2045E-02
5 0.3900E-03 0.4155E-03 0.4155E-03
6 0.3288E-03 0.3504E-03 0.3504E-03
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Table 4 shows the natural frequencies of three-cases, under
the same value of k, k=14,505 x 108 N/m’.

Table 4 The natural frequencies fort hree-cases (unit:rad/sec)

Case Natural Frequency(rad/sec)
Case 1 0.1292903E+02
Case 2 0.1233828E+02
Case 3 0.1233805E+02

Table 5 The stiffnesses of three sub-cases, for Case 2 (unit:N-m)

Case
. Case 2-1 Case 2-2: Case 2-3
Stiffness
Dy, 323428383.7 323428383.7 323428383.7
Dy, 151828300.8 266228356.0 323428383.7
Dy, 90690632.4 90690632.4 0.
Dy 206573097.2 206573097.2 0.

In order to study the influence of D,,, D,,, and Dg

stiffnesses, three sub-cases for Case-2 are considered as Table 5.

3.2 Numerical Result

3.2.1 Influence of Dy, D,,, Dy Stiffnesses

The applied load is the concrete self-weight plus the wheel
loads as shown in Fig. 2. The deflections at the wheel load
points for three sub-Case 2, when the modulus of foundation,

k=14,505 x 106 N/mz, are given in Table 6.

Table 7 The natural frequencies for three sub-cases of Case 2 (unitrad/
sec)
Case Natural Frequency(rad/sec)
Case 2-1 0.1233830E+02
Case 2-2 0.1257711E+02
Case 2-3 0.1101777E+02

3.2.2 Influence of the Modulus of Foundation
The influence of the modulus of foundation, k, is studied

by changing k values from 14,505 x 103 N/m’® to 14,505 x
107 N/m’.

Table 8 shows the deflections at the wheel load points for
Case 2-1, under changing values of k.

Table 8 Deflection at loading points for Case 2-1 (m)

2
Load Poi;‘fN/ ™) 14,505x10° 14,505x10° 14,505x107
1 0.1573E-01 0.4571E-03 0.2774E-03
2 0.1502E-01 0.3951E-03 0.2296E-03
3 0.1969E-01 0.2499E-02 0.2272E-02
4 0.1866E-01 0.2242E-02 0.2029E-02
5 0.1695E-01 0.6005E-03 0.3944E-03
6 0.1608E-01 0.5224E-03 0.3311E-03

Table 6 The deflections at wheel loading points for three sub-cases

of Case 2 (unit:m)

Case
Load Pomit Case 2-1 Case 2-2 Case 2-3
1 0.2955E-03 0.2894E-03 0.4409E-03
2 0.2458E-03 0.2411E-03 0.3177E-03
3 0.2300E-02 0.2240E-02 0.2778E-02
4 0.2054E-02 0.2010E-02 0.2319E-02
5 0.4155E-03 0.4030E-03 0.5739E-03
6 0.3504E-03 0.3410E-03 0.4426E-03

Table 7 shows the natural frequencies of three sub-cases,

under the same value of k, k=14,505 x 108 N/m?.

Table 9 shows the natural frequencies for Case 2-1, under
changing values of k . Fig. 4 is the graphical presentation
of Table 8, and Fig. 5 is that of Table 9.

Table 9 The natural frequency for Case 2-1 (uuit:rad/sec)

k (N/mz) Natural Frequency(rad/sec)
14,505x10° 0.8068337E+01
14,505x10° 0.1232987E+02
14,505x 107 0.1233943E+02

o o
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Fig. 4 The deflection at loading Fig. 5 The natural frequency
points for Case 2-1. for Case 2-1.
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4. Conclusion

In this paper, the simple and accurate method of vibration
analysis developed by Kim, D. H. is presented. The presented
method is simple to wuse but extremely accurate. The
boundary condition can be arbitrary. Both stiffness and mass
of the element can be variable. One can use any method to
obtain the deflection influence coefficients. The accuracy of
the solution is dependent on only that of the influence
coefficients needed for this method. One should recall that
obtaining the deflection influence coefficients is the first step
in design and analysis of a structure. The merit of the
presented method is that it uses such influence coefficient
values, used already for calculating deflection, slope, moment,
and shear to obtain the natural frequency of the structure.
When the plate has concentrated mass or masses, one can
simply add these masses to the plate mass and use the same
deflection influence surfaces to obtain the natural frequency.
This method is to the three

reinforced concrete bridge with elastic intermediate supports.

applied span continuous

Recently, use of polymeric bridge support has become
quite popular. Unlike the metal hinges and rollers, these
polymers behave like elastic support. The actuators for the
active control of the bridge, behave, at least partially, as the
elastic support.

The finite difference method (FDM) is used to obtain the
deflection influence surfaces in this paper. In order to reduce
the required number of pivotal points, the three simultancous
differential

dependent variables, w, M, and M,, are used instead of the

partial equations of equilibrium with three

differential
If FDM is applied to these equations, the

fourth order partial equation for the special
orthotropic plate.
resulting matrix equation is huge in size, but the tridiagonal
matrix calculation scheme used by Kim, D. H. is very
efficient to solve such problems. [8]

The effect of D,,, D, and D¢ and stiffnesses, and the
modulus of foundation, on the natural frequency is thoroughly
studied and the results are given in tables to provide a

guideline to the practicing engineers.
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