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Approximate Solution for Finding the Buckling Strength of Orthotropic
Rectangular Plates

J. H. Jung™, S. J. Yoon, S. K. You”

ABSTRACT

In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are
assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions
including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the
buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data
obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient
of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of
aspect ratio, elastic restraint, and material properties of the plate. The results of buckling analyses by
closed-form solution and simplified form of solution are compared for various orthotropic material properties. It
is confirmed that the difference of results is less than 1.5%.
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Key Works : & 30|43 ®(Orthotropic plate), 2 7|4=(Buckling coefficient), ¥+ 7<(Elastic restraint), 3/\}*‘(Approxlmate
solution)

1. Introduction structures, are gaining broad acceptance in civil engineering
applications gradually. Growing maintenance demand and
Fiber reinforced plastics (FRP), limitedly used to aerospace  durability problems in existing infrastructures made of
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conventional material such as concrete and steel have led
researchers to develop FRP structural members.

In many manufacturing techniques of FRP structural shapes,
the pultrusion process is becoming a popular one for producing
relatively low-cost FRP structural members in civil engineering
fields. The pultreded FRP structural shapes are usually composed
of thin-walled plate elements. In the design of such a structural
member, the local buckling can be one of the major failure
modes since the material has low stiffness, which is prone to
deflect, and it remains linearly elastic for large deflections and
strains, unlike the conventional construction materials that yield
(structural steel) or crack (concrete) for moderate strains.

In the local buckling analysis of thin-walled structural
members, it was assumed that the plate junctions remain straight
and the angles between plates at the junction remain constant
during local buckling. Therefore, the local bucking indicates the
buckling of plate components and the study on the behavior of
plate buckling can give a fundamental knowledge of local
buclding problem.

The mechanical properties of pultruded fiber reinforced
plastics were approximated as orthotropic due to the reinforcing
nature of fibers (i.e., unidirectional) in the early years of 1990th
and those were obtained by performing coupon test. In recent
years, it was also accepted that pultruded sections can be
simulated as laminated composites and Davalos et al. (1996)
showed that the mechanical properties and stiffness of plate
component can be predicted by using the micromechanics
formulae and classical lamination theory [1].

In this study, brief review of general solution for finding the
buckling strength of isolated plate component of pultruded
structural members is presented. The isolated plate component is
approximated as a specially orthotropic (transversely isotropic)
plate subjected to linearly varying in-plane forces and its loaded
edges are assumed to be simply supported considering the
practical behavior of structural members. The unloaded edge can
be not only the extreme boundary condition such as simple,

fixed, and free, but also the rotationally restrained if the

unloaded edge is the common junction of plate components.
Conducting the buckling analyses with various material
properties and numerical analysis, the simplified form of
equation is suggested for orthotropic plate buckling problem.
The results obtained by proposed simplified form of equation

are compared with those of closed-form solution.

2. Previous Work

The instability problem of isolated orthotropic plate have
been well documented by many engineers and scientists.
Wittrick  (1952)
stability problems for orthotropic and isotropic plates under
bi-axial and uni-axial direct stresses [2]. Lekhnitskii (1968) [3]

published the closed-form solutions for buckling of orthotropic

investigated the correlation between some

plate with various boundary conditions. Those solutions of

orthotropic  plate buckling under uniform compression were
applied to derive the local buckling equation of orthotropic
thin-walled compression members by Lee (1978, 1979) [4,5],
Yoon (1993) [6], Chae (1994) [7], etc.

Shih (1994) [8] developed a general analytical solution
pertaining to the buckling behavior of transversely isotropic
plates subjected to linearly varying in-plane stresses along the
loaded edges. In his work, the solutions for local buckling
problem of orthotropic flexural members were presented by
using the buckling equation of orthotropic plates.

Webber, et al. (1985) [9], Bank (1996) [10], and Yoon et al.
(1999) [11] were derived the buckling equation of orthotropic
plate with restrained and free edges under uniform compression.
Yoon, et al. (2000) [12] published the results of buckling
analysis of restrained orthotropic plate under linearly distributed
in-plane forces by using the Rayleigh-Ritz method.

Since the buckling equations obtained in the previous works
were the transcendental forms, the equations obtained are very
complex and too difficult to use in practical design. Unlike the
FRP has
complex material properties and its mechanical properties vary

conventional material such as a structural steel,

depending upon the reinforcing fiber and its containment.
Therefore, it is necessary to develop the simplified form of
equation convenient

for the engineers in practice and to

establish the rational design criteria of the member.

3. Closed-form Solution

Consider an isolated homogeneous orthotropic plate
subjected to linearly distributed in-plane forces as shown in
Fig. 1. The loaded edges are assumed to be simply supported
and the unloaded edges can be arbitrary boundary conditions
length and

width of plate are a and b, respectively, and ¢ is the

including elastically restrained boundary. The
thickness of plate. £; and E, are the Youngs moduli of plate
in longitudinal and transverse directions, respectively, and
those can be obtained by coupon test and predicted by using
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the micromechanics formulae and the classical lamination theory

[1]. ¢{(=x/a) and n(=y/b) are the nondimensionalized
Cartesian coordinates.
Py Dy
—3 arbitrary boundary = % &
\: < or elasucally restrained > :,-'
P =3 7 P,
b fsimple 4_1_, .. Simple}/
A—| arbitrary boundary —»
se—| ! corelastically restrained —,
Py ’{ Py

a

—

»n

Fig. 1 Orthotropic rectangular plate.

The applied linearly distributed loads can be written in
terms of constant ¢ which represents the distribution of loads
as given by Eq. (I). When ¢ is zero uniformly distributed
loads are applied, and when ¢ equals to 2.0 triangularly
distributed compressive and tensile loads are applied.

pe=p(1—cn) M
When the unloaded edges are elastically restrained, the
coefficient of elastic restraint €can be expressed as follows:
_ &
=g @
In Eq. (2), ¢ is the restraining moment along the

rotationally restrained edge per unit length per unit rotation.
When & is equal to zero it stands for a simple support, and
when & goes to infinity it corresponds to a fixed support.

3.1 Basic equations

For the orthotropic plate as shown in Fig. 1, the
governing differential equation for buckling based on the
small deflection theory can be stated as Eq. (3) by using the

dimensionless parameters.

140w 3w
AlS 854 +2/1 3% )
8 2501 2 2.0%w
e R(1—cnpAis a2 0
In Eq. (3), the letter w indicates the out of plane

deflection of plate and s is the ratio of width to length of

plate (=b/a). The dimensionless buckling coefficient k4 and

dimensionless parameters A, and A, are defined as follows:

et BT {25
where,

D.= 12(1?5;;/” . Dy= 12(1€y5j Gab)

D=2 L B0, 559

The general solution of Eq. (3) can be obtained as Eq. (6)
by assuming the deflection function in the transverse direction
as the power series functions [8].

1( nZ=:OB"'l7/n>

+ A2( ,,ZOB“”") + A3( "Z:DB,,_aﬂ")]sin mng

w = {AO( :Z:OB”‘O”n) +A ©)

In Eq. (6), m is the number of half-sine waves along the
g-axis. A; with i = 0, 1, 2, and 3 are constants that must be
determined from the boundary conditions along the unloaded
edges, n= 0, 1, and the B.; with i = 0, 1,

given in Appendix.

2, and 3, are

3.2 Determinantal form of Equations

As previously mentioned, 4; with i =
that
conditions along the unloaded edges, n=

0, 1,
determined ~ from

2, and 3 are
the boundary
0, 1. Conditions of
various boundaries are presented in Table 1.

constants must be

Upon substituting Eq. (6) into the boundary conditions as
indicated boundaries, two of each boundary, four distinct
for 4;

obtained, and except for the case of restrained boundary

simultaneous linear homogeneous equations are
conditions the size of simultaneous equations are reduced to
two by two. Table 2 shows the characteristic function of
plate buckling for various boundary conditions along the
unloaded edges.

In Table 2, & and g, are the coefficient of elastic

restraint at the unloaded edges, =0, 1, respectively. Equating
the characteristic equation in Table 2 to zero, the buckling
coefficient defined in Eq. (4a) can be obtained at a certain
value of aspect ratios and material properties of the plate.
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Table 1 Boundary conditions at unloaded edges coefficient of orthotropic plate with specific loading and
Boundary boundary conditions [13].

at =0 or 1 Conditions Since the buckling stress is the same throughout the plate
— when buckling occurs, only one half-sine wave length of
Simple (S) 9w , 3% plate (=a/m) can be considered to find the buckling strength
ot TS T oa = of the plate as shown in Fig. 1.
0 Assuming the deflection in the transverse direction is a
=
Fixed (F) . function of nponly as a general case, the deflection function
ay =0 can be taken as following Levy's,
9w 2 0%w
+ v,,$° =0 .
2 xy =2 — =
Free (Fr) 8;7 & ) w= f(7)sin (mn&) (@)
LU+ (24— v, =0
7 con The strain energy and the work done by the external
S— X : : ;
Retationaly ) ) , forces during buckling are given by, respectively,
restrained (R) dw _ 120 - <5=—L)
7€ 9y D, 2
o123
¢ : bending moment per unit rotation per unit length at 2 Jo at \ 9
restrained edge v D.( 92 )( 92 )
I ¥ w w 8
T2 o N ape ®
D, ([ 3%w)\? D 2,0 \?
r () v (G e
4. Approximate Solutions
. 1 2
4.1 General solution of energy approach T=12’—°; fo f(l—cr])( %’:_3) dédy )
The principle of conservation of energy which is one of
the energy methods can be used to find the buckling
Table 2 Characteristic functions
Boundary condition at =0, 1 Characteristic function
$o.1 Bo.3
Simple - Simple (SS) SS=
b2 Bay
Bo.2 Bo.3
Fixed - Simple (FS) FS=
$a.0 Pa3
$o.2 B3
Fixed - Fixed (FF) FF=
$1.2 P13
$2.17 AmPo. $9.3~ XmPo.3
Simple - Free (SFr) SFr=
b5~ om— ) P1.1 b33~ (2om — Am) P13
$2.2~ AmPo.2 B2.3~ xmPo.3
Fixed - Free (FFr) FFr=
b3, (Qon = Xm)b1.2 P33~ (2Am— Zm)b1.3
Restained - Restrained (RR) RR=¢ey - FF+¢, - FS+2¢, - SF+2+SS
Restrained - Free (RFr) RFr=FFr+ %SFr
1

o |
_ n! — 2242
where, ¢, .= HZ:I_ CEDY Byjy Xm= VM TS
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Substituting Eq. (7) into Egs. (8) and (9), and evaluating
the integral in the direction of Z-axis, the strain energy and
the work done are formulated in terms of derivatives of
transverse deflection.

Applying the principle of conservation of energy and the
definition of bucking coefficient as defined in Eq. (4a), the
buckling coefficient can be expressed as

C
k=¢—i+C2¢§,,+ Cy 10

In Eq. (10), ¢, is the ratio of half-sine wave length and

width of plate, and the constants C, C;, and C; are as
follows:

C1=\/—%5A1, c2=7r17‘[%,43 (11 2)
c3=#[ﬁ—L=—L4(1_Z:;£”:)GX AA—ZVW\/%AZ] (11¢)
T T T

_ Juwrva J Ay (1260

[ya=entmovar” T [la-entanyar

Note that the constants C), Ca, and C; in Eq. (10) are
numerical because the A4, 4, As, and A, are numerical in

evaluating the integrals.

Bulson (1969) presented the example problems for isotropic
material [13], and Yoon, et al. (1995) extended the same
problem to orthotropic material [14]. It was shown that the
results obtained by Eq. (10) differed by 5% to 11 % from the
closed-form solutions [15].

Eq. (10) can be evaluated easily if the deflection function
for the transverse direction has been assumed. But it is
limited to use Eq. (10) when ¢ equal to 2.0, which means
that the linearly distributed in-plane forces due to pure
bending are applied, because the denominator in Egs. (12)
becomes zero. In addition, the accuracy of result depends on
the appropriate assumption of deflection function in the
transverse direction.

4.2 Approximate solution

In this study, we suggest the approximate solution to find
the buckling coefficient of orthtropic plate whose boundary
conditions at the unloaded edges are arbitrary including the
rotationally restrained boundary condition as shown in Fig. 1.

Reviewing the published documents [13, 14, 15], the simplified
form of equation for the buckling of rectangular orthotropic
plate can be assumed as the same form of Eq. (10).

The first derivative of & with respect to ¢, at the
minimum point of the curve must be vanished, which leads
to the equation

kmin =2V C1C,+ Cy (13)

occurring when

Table 3 Elastic constants of various composite materials {8]

Material Type GPaEEksi) GPab'sti) ory Tesi) Viy
Structural Steel 200,00 (29,0000 | 200.00 (29,000) 7692 (11,153) 0.30
BFRP (B4/N4405) 204.00 (29,580) 1848 (2,680) 5.59 (810) 0.23
CFRP (AS/H3501) 138.00 (20,010) 8.97 (1,300) 7.10 (1,030) 0.30
CFRP (IM6/Epoxy) 203.03 (29,440) 11.17 (1,620) 841 (1,220) 0.32
CFRP (T300/F934) 148.00 (21,460) 9.66 (1,400) 4.14 (660) 0.30
CFRP (T300/N5208) 181.03 (26.250) 10.28 (1,490) 7.17 (1,040) 0.28
CFRTP (AS4/PEEK) 134.00 (19,430) 8.90 (1,290 5.10 (740) 0.28
GFRP (E-glass/Epoxy) 38.62 (5,600) 8.28 (1,200) 4.14 (600) 0.33
GFRP (E-glass/Polyester) 33.45 (4,580) 7.03 (1,020) 297 (430) 0.35
GFRP (E-glass/Vinylester) 17.24 (2,500) 6.70 (1,000) 293 (425) 0.33
KFRP" (Kev49/Epoxy) 76.00 (11,020) 5.52 (800) 228 (330) 0.34
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cl ) 1/4

su=(E (14

C) can be assumed as Eq. (15a) for the uniform
compression (¢ =0.0) and Eq. (15b) for the linearly varying
in-plane forces (c=2.0), respectively. It was shown that those
assumption was reasonable in previous work[13, 14, 15].

=y & (152)

y

E
C=2 7

Once the value of C) is known, C, can be found by

(15b)

substituting the exact value ¢, and Egs. (15) into Eq. (14),
and then C; can be obtained by using Eq. (13) with obtained
values of Ci and Ca.

As shown in Eqs. (11) and (12), C; and Cs are affected
by the mechanical properties and boundary conditions at the
unloaded edges of plate.
different
performed with wide range of commonly used composite

For three cases, parametric studies were
materials given in Table 3, and the approximate equation of

C; and Cs is obtained, respectively, as follows.

RR Case: Restrained-Restrained boundary conditions at unloaded
edges and plate subjected to uniform compression

In this case, the unloaded edges of plate (y=0, ) shown
in Fig. 1 are both rotationally restrained (e, =¢=¢) and
uniform compression is applied at the edges x=0, a. Flange
of box-shape compression and flexural members may be
modeled as this case.

Using the closed-form solution in Table 2, the minimum

buckling coefficient Amin and its corresponding ¢, , were

found for various composite materials given in Table 3.

The results obtained by the closed-form solution were
regenerated by using Eqs. (17) and (I18) and were plotted in
Figs. 2 and 3.

EX
C = E, (16)
C e E,
= oy =5 17
f RR(E) ¢4kmm E_v ( )
g ref8)= € sn (18)

E.  20-v,w,)G,

Yy E, +*\/~=LZ—ZEXEJ,

fx(€) =5.2 forifixed- fixed bpundary conditions
at inloaded edges

\ 140.52 ¢

1+0.1-¢

Structural Steel

BFRP (B4/N4405)

CFRP (AS/H3501)

CFRP (IM6/Epoxy)

CFRP (T300/F934)

CFRP (T300/N5208)
CFRTP (AS4/PEEK)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Polyester)
GFRP (E-glass/Vinylester)
KFRP (Kev49/Epoxy)

1 predicted PO

Jer(®
[ &) w -
r'-'—=='=:5\*

].DPOQEIId(O.

\fRR(C) = 1.0 for simple - simple boundary conditions

at ded edges

0 100 200 300 400 500
Elastic Restraint, £

Fig. 2 fra(€) for RR case.

30

er(€) = 2.434 ifor fixed- fixed boundary conditions
25 1 loaded :A S

\2(1 +0.0436 -

PX] Sor— - 1+.0.035:¢
T Jri(€) = 2.0 for simple - simple boundary conditions
at unloaded edges

15 ®  Structural Steel

BFRP (B4/N4405)

CFRP (AS/H3501)
CFRP (IM6/Epoxy)
CFRP (T300/F934)
CFRP (T300/N5208)
CFRTP (AS4/PEEK)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Polyester)
GFRP (E-glass/Vinylester) |
KFRP (Kev49/Epoxy)
predicted

0.0 ; 1 I
0 100 200 300 400 500

Ziel®)

0.5

e>POSGONI4A0

Elastic Restraint, €

Fig. 3 grr(€) for RR case.

As shown in Figs. 2 and 3, the calculated values of frr(€)
and grr(&) are coincided with each other for various
composite materials given in Table 3. From the results, Caxg

and Csgr can be approximated as

’ E
C ar=1 xr(8) Ef (16)
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C rr=g grle) - {Vyx ¢ Za )} 17
y
where,
f re(9)= 111%.512:—:5
_ .
& (&)= 2(1+0.0426¢&)

1+0.035¢

RFr Case: Restrained-Free boundary conditions at unloaded
edges and plate subjected to uniform compression

In this case, the unloaded edges of plate (y=0, b) shown
in Fig. 1 are rotationally restrained (e, =¢) and free,
respectively, and uniform compression is applied at the edges
x=0,a. The flange of I-shape members may be approximated
as this case.

Following the same procedure for the RR case, the results
obtained by the closed-form solution were also regenerated by

using Eqs. (20) and (21) and were plotted in Figs. 4 and 5.

E,
C k= fy (16)
C 1RET Ex
= REr 20
f ree(8)= /?m... E, (20)
«V E
gRFr(5)=ML @n

(1 - nyu_wr) ny

As shown in Figs. 4 and 5, the calculated values of fre(€)

and grr(€) are coincided with each other for various
composite materials given in Table 3. From the results, Core

and Csrrr can be expressed as Egs. (22) and (23).

’ E
C wrr=1 rre&) ff

(22)
G 1—
C = (e - —(E%—r%ﬁﬁ 23)
¥
where,
f rrel€)= %?f%
___1+0.156
& reel&) = G895 £ 0 097

Structural Steel

BFRP (B4/N4405)

CFRP (AS/H3501)
CFRP (IM6/Epoxy)
CFRP (T300/F934)
CFRP (T300/N5208)
CFRTP (AS4/PEEK)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Polyester)
GFRP (E-glass/Vinylester)
KFRP (Kev49/Epoxy)

0.35

0.30 |-

0.25

IQDPOQDIQ(O.

0.20

Sred®

frek€) = 0.133: for fixed-free boudary conditions
at unloaded giges

0.133-¢
42+¢

0.10

0.05

(€)= 0.0 for simple-free boudary conditions
4t unloaded edges

200 300 400 500

Elastic Restraint, £
Fig. 4 frr(8) for RFr case.

2.0

ril€) = 1.608 for fixed-freé: boundary conditions
at unloaded edges

o le)= 1+0.156-¢

T 01822+0.097 €
8ai,(€) = 1.216 for simple-free boundary conditions
at unloaded edges

Structural Steel

BFRP (B4/N4405)

CFRP (AS/H3501)
CFRP (IM6/Epoxy)
CFRP (T300/F934)
CFRP (T300/N5208)
CFRTP (AS4/PEEK)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Polyester)
GFRP (E-glass/Vinylester)
KFRP (Kev49/Epoxy)
predicted

0.0 L .
200 300 400

8rr (8

0.8

0.4

|.DD<>0DI<I<O.

500
Elastic Restraint, £
Fig. 5 grr(€) for RFr case.

RS Case: Restrained-Simple boundary conditions at unloaded
edges and plate subjected to linearly distributed forces

In this case, the unloaded edges of plate (y=0, b) shown
in Fig. 1 are rotationally restrained and simple (£,=¢, €,=
0), respectively, and linearly distributed in-plane forces are
applied at edges x=0, a. The web of I- and box-shape flexural
members may be simplified as this case.
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the results
obtained by the closed-form solution were regenerated by

As the same procedure for the RR case,

using Egs. (25) and (26) and were plotted in Figs. 6 and 7.

50
fos(€) = 39.333 for fixed-simple boundary conditions
40 |- atunloaded edge:
L4
Na 140354 ¢
0.103+0.009 -¢
30 =
@ ®  Structural Steel
= O  BFRP (B4/N4405)
v CFRP (AS/H3501)
20 o v  CFRP (IM6/Epoxy)
Jas(8)=9.709 ®  CFRP (T300/F934)
for fixed-simple O CFRP (T300/N5208)
boundary conditions | ¢ CFRTP (AS4/PEEK)
/a unioaded edges &  GFRP (E-glass/Epoxy)
10 ~| A GFRP (E-glass/Polyester)
& GFRP (E-glass/Vinylester)
® KFRP (Kev49/Epoxy)
predicted
o ; h
0 100 200 300 400 500
Elastic Restraint, £
Fig. 6 frs(8) for RS case.
25
H
i
H
@
-1
B
10
—8— =0
—O—¢e=3
¥ e=10
—7— e=20
5 e
—0— £=200
—— =500
o i
0.0 0.2 0.4 0.6 0.8 1.0 1.2

L 20-vv.J)a,
E_‘ ~ JEE,

Fig. 7 Gss for RS case.

24

EX
C gre= V fy

AZH=E F357) 1§ A A 35
_ C e E,

Fred@="5 ™ "\ E, 25)

C 3rs= ki _2m (26)

1+0.0246 ¢
0.0954+0.00188 -¢

2nsa (€)=

o
% 9
&
ol ’/<: 140.0825 ¢
k=] +0. .
= )= —m
2 fi )= 555 G009 ¢
&
¢ 6
o
[
3
[E - 20-v,y
Cirs = Busi (€)+ graal€) vy [ + 202
RS %.sl( ) gns.( ){ 2 E, mz }
0
0 100 200 300 400 500

Elastic Restraint, &

Fig. 8 grsi(€) and grs&)for RS case.

As shown in Fig. 6, the calculated value of fes(&) is
coincided with each other for various composite materials
given in Table 3. From the results, Cors can be expressed as

Eq. (27).

{ E
C oas=1 s(e) }—g‘f

where,

@7

1+0.354e
0.103 +0.009¢

f RS(6)=

In Fig. 7, the value of Cies is varied almost linearly with
respect to specific nondimensional value of material properties
as shown in horizontal axis, for each elastic restraint.

Therefore, Cars can be approximated as a linear function,

v V)G

Cws=gra(®tg Rsz(E) {yﬁ‘/ Z(ﬂl_ﬂ_ﬁ_‘r\_}

28)

Linear regression was performed for each set of the results

with respect to elastic restraint in Fig. 7, grsi(€) and grsi(&)
were plotted in Fig. 8, and the approximate equations were
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Table 4 Simplified form of equation

RR Case RFr Case RS Case
cl=2\/ g
c —\/ E, c =y L ’
TVE, = [E,
E" ! Ey =f RS(E) E'L
E, E. x
fRR(e)v = C=f Rm(s)\ ol C; =g gsi(e)
)G
Call—vyrs \/ Lt ]
Ci=g wela) {V,wt 26 (1 it )} Cy=g e - \(/-lﬁ ) +& gsle) - {Vnr
S
_ 1+0.354£
£ )= 4052 f el =138 S +s(9= 7 105-+0.009
) ’ 1+0.0246¢
_ 2(1+0.04%6¢) __ 140.156¢ £ goy(8)=rpe = 0e
& we(€) =175 0352 € €)= 7 g55 10 0972 0.0954 +0.00188¢
£ (&) = —LE0.0825¢
RS2 0.22+0.009¢

min

= ;C;— +Codl+Cy, B

= C.Co+ Gy

RR Case : Restrained-Restrained boundary conditions at unloaded edges, plate subjected to uniform compression
RFr Case: Restrained-Free boundary conditions at unloaded edges, plate subjected to uniform compression
RS Case : Restrained-Simple boundary conditions at unloaded edges, plate subjected to linearly distributed in-plane forces

obtained as Eqgs. (29) and (30), respectively.
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Minimum Buckling Coefficient, k

- 1+0.0246¢
ws1(€) = 5 0954 + 0. 00183¢ 29)
— _1+0.082%5¢
r2(&)= 5 5540.009¢ (30) .
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Fig. 9 Minimum buckling coefficient of plate(RR Case).
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and the horizontal
values are the results obtained by the closed-form solution

Restrained-Free at Unloaded Edges

(plate subjected to uniform compression)
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CFRP (T300/N5208)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Vinylester)
predicted
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axis is the elastic restraint.

500

Fig. 10 Minimum buckling coefficient of plate(RFr Case).

Above results are summarized in Table 4, and Figs. 9, 10
and 11 show the results of buckling analysis for the plate
with typical orthotropic mechanical properties. In the graphs,
the vertical axis indicates the minimum buckling coefficient
Symbolic
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and the solid line is the result obtained by suggested
approximate equations in Table 4.

The difference of the results obtained by the approximate
solution is less than 1.5%.

Restrained-Simple at Unloaded Edges

(plate subjected to linearly distributed in-plane forces, ¢ = 2.0}
50

40

‘min

30/7/‘

20

Structural Steel

BFRP (B4/N4405)
CFRP (T300/N5208)
GFRP (E-glass/Epoxy)
GFRP (E-glass/Vinylester) [
—— predicted

Minimum Buckling Coefficient, k

mJ4080

0 100 200 300 400 500
Restraint eat =0

Fig. 11 Minimum buckling coefficient of plate(RS Case).

5. Conclusions

In this paper, we presented the analytical solution for the
elastic buckling of orthotropic plate subjected to uniform
compression and linearly distributed loads with elastically
restrained boundary conditions at unloaded edges. Parametric
studies were conducted and the approximate equation was
developed to determine the buckling coefficient of orthotropic
plate. The results obtained by the simplified form of equation
were agreed well with those obtained by the closed-form
solution. Therefore, the simplified form of equation proposed
in this study can be used effectively to analyze the buckling
of orthotropic plate.
between
components of structural members is directly related to the

In practice, the degree of restraint plate
flexural rigidity and ratio of in-plane compressive stress
applied on each plate component. Therefore, in order to
establish the design criteria relating to the local buckling of

orthotropic structural members, further studies need to be

conducted to evaluate more appropriate coefficient of restraint
for a wide range of FRP structural shapes.

There is also some limit conditions to use those proposed
equations for all kind of FRP structural profiles. Since the
study, the
bending-extension

pultruded  shapes considered in this
bending-twisting

coupling effect were neglected in derivation of differential

were

coupling effect and
equation, which can not be negligible in the problem of
laminated structural shapes. Therefore, the suggested equations
may not be applicable for the buckling problem of general
laminated plates. ’
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Appendix
for0<n< 3
_[1 if n=4
B, {0 if ¥4
for n=4
Bn.i=aan—Z,i_(Bn—ynk)Bn*A,i
forn> 5

Bn.i=aanfZ,i—(ﬁn_ ynk)Bn—A.i_Crnan—S,i

_ 2(n—=2)! _ (n—=4)!
4n= n! Aomy  Bu= a4

_ (n—4)!
n!

Tn

Agm=(Aymrs)?

1m

T4 A= (A, m7s)?



