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Transient Response of Functionally Graded Piezoelectric Ceramic with Crack

Jeong Woo Shin™*, Tae-Uk Kim", Sung Chan Kim"

ABSTRACT

Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded
piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the
functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and
Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm
integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to
show the dependence of the gradient of material properties and electric loading.
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1. Introduction Axisymmetric vibration of piezo-composite hollow cylinder
was studied by Paul and Nelson[3]. The dynamic
Recently, the dynamic response and the failure modes of  representation formulas and fundamental solutions  for

piezoelectric materials have great attention from many  Piezoelectricity was proposed by Khutoryansky and Sosa[4].

researchers. Shindo and Ozawa[1] first investigated the steady ~ 1he dynamic response of a cracked dielectric medium under

response of a cracked piezoelectric material under the action the action of harmonic waves in a uniform electric field was
of incident plane harmonic waves. A finite crack in an  studied by Shindo er al[5]. Li and Mataga[6,7] studied the

infinite piezoelectric material under anti-plane  dynamic semi-infinite propagating crack in a piezoelectric material with

electro-mechanical impact was investigated by Chen and electrode boundary condition and vacuum boundary condition

Yu[2] with well-established integral transform methodology. ~ On the crack surface, respectively. In the work, the transient
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taken
consideration. Chen[8] obtained the solution of the infinite

dynamic  electro-mechanical  loads  were into
piezoelectric strip parallel to the crack under anti-plane shear
impact loading using integral transform method. However,
most and few

graded
piezoelectric material are presented. Shin and Kim[9] studied
the

ceramic

researches examined homogeneous models

fracture  mechanics  research  of  functionally

crack problem for functionally graded piezoelectric
They

loading  with

strip  using transform
the

permeable crack boundary condition.

integral techniques.

considered static  electro-mechanical
Applying the electric boundary condition for the crack,

many researchers have adopted two different boundary
conditions.

Parton[10], Zhang and Hak[11] and Hao and Shen[12]
proposed a permeable crack boundary condition which
assumes the continuity of electric displacement across the
crack faces. On the contrary, Deeg[13], Sosa[l4] and Pak[15]
adopted an impermeable crack boundary condition, ie., the
vanishing of normal electric displacement on the crack faces.
Also, and Singh[16] the

impermeable condition using FEM analysis. But these two

Kumar showed validation of
boundary conditions have not been verified yet, so each
researcher presented different results.

Xu and Rajapakse[l17] found ‘that the exact

electric boundary conditions accounting for the medium inside

Recently,

the crack gaps would be reduced to the impermeable crack
model when the poling direction is perpendicular to the
applied electric field, so impermeable boundary condition is
more suitable in this paper.

In this paper, we study the problem of a finite central
crack in a functionally graded piezoelectric ceramic medium
under anti-plane shear impact loading based on the dynamic
that the
properties of the functionally graded piezoelectric material

theory of linear electroelasticity. We assume
vary continuously along the thickness. The impermeable crack
boundary condition is adopted. By using the Laplace and
Fourier transform, the problem is reduced to two pairs of
then

equations of the second kind. Numerical results for the stress

dual integral equations and into  Fredholm integral

intensity factors are shown graphically.

2. Problem statement and method of solution

Consider a functionally graded piezoelectric medium in the
form of an infinite body containing a finite central crack

Fig. 1 A functionally graded piezoelectric ceramic medium with crack

: definition of geometry and loading.

subjected to mechanical and electric Heaviside step pulse
loadings as shown in Fig. 1. A set of cartesian coordinates(x,
¥, z) is attached to the center of the crack. The piezoelectric

ceramic body poled with z-axis and is thick enough in the
z-direction to allow a state of anti-plane shear. The crack is
situated along the central line(-a<x<a, y=0). Because of the
symmetry in geometry and loading, it is sufficient to consider
only the right-hand half body.

We assume that the properties of the functionally graded

piezoelectric ceramic strip vary continuously along the
thickness and are simplified as follows(Erdogan[18]),

Cy = e M

dy = dye? @

ey = e 3

where ¢, is the elastic modulus measured in a constant

clectric field, 4, is the dielectric permittivity measured at a

constant strain and e is the piezoelectric constant. %, df,

and &Y

are material properties at y=(, and B is the
non-homogeneous material constant.

The piezoelectric boundary value problem is simplified
considerably if we consider only the out-of-plane displacement

and the in-plane electric fields such that

u,=u,=0, u, = w(xyt), 4)
E,=E (x,9,t), E,= E(x,3,1),
E,=0 )
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where %, and E, (k= x,y,2) are displacements and wx, v, ¢ 21 o+ wCx. v, B) b, (14)
electric fields, respectively. i J oo
In this case, the constitutive relations become
The superscript * stands for the Laplace transform domain.
0, (%, 3, t) = cyw ;+ ed ;s (6) A Fourier transform is applied to the Laplace transform of
Dj(x, y, 1) = 315W,j"‘d11¢,,' ) ) Egs. (9) and (12), and the results are
- * 2 el -
where o,; and D; (7= x,y ) are the stress components w(x,y,9) = T fo A (s, p) e~ “cos(sx)ds, (15)
and electric displacements, respectively. o 0
The dynamic anti-planc  governing equations  for ¢"(x,9,0) = %f 0 [%Al(s,p)e_”
functionally graded piezoelectric materials are simplified as _“ry (16)
follows, +A,(s, p)e ~ "] cos (sx)ds,
cuV 2+ eV 24 where
®
029 ‘w
+ By +eGy) = o SE a=o+ 4 r=a+4, a7
— ' ey B
eV *w—d, v 2 S=\7r+ A=y S+, (18)
% 5
+B(e15%—dn—ﬁ) r=1 s+ L 19)
y L

v?2= 3%/3x>+8%/3y*

Laplace operator and © is a material density. We also

where is the two dimensional

assume the material density is as follows,

o= e 10

From Egs. (8) and (9), we can obtain the equation of

wave motion in a form,

a 1 2%w
viw+ 5 = =5 , 11
where c,=V 10" and u0= 3+ &%/ Y.
The Laplace transform of Eq. (11) is in the form,

2

i+ g — Loy (12)
where
w*(x,y,p)=f0 wlx,y,t) e Mdt, (13)

A(s,p) and A,(s,p) are the unknowns to be solved.

The boundary conditions in the Laplace transform domain
can be written as

0y.(%,0,0) = —1o/p, (0=x(a),
(20)

w*(x,0,p) =0, (a<x( ),

D' (x,0,p) = —Dy/p, (0=xKa),
@n

$"(x,0,0) =0, (a<x( ) .
From the two mixed boundary conditions Egs. (20) and

25}

integral equations,

we can obtain the following two simultaneous dual

2 f oc)lIAl(s, p) cos(sx)ds =
0

T

1 d?ﬂ'o + elSDQ

, 0=x<a), 22
b 091403?1"' 9(1)52 (0sxta) @)
fomAl(s, pcos(sx)ds=10, (a<x{o0),
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2 [ ray(s, 9 cos (sn)ds = ‘%?ﬁ’

T
(0<x<a), (23)

[ A D cos(sds =0, (asa<oo).

Egs. (22) and (23) may be solved by using new functions
01(&,p) and O3(E, p) defined by

A(s.p) = [ eaie, DI, @4

As.p) = [ “eoye, Drs0aE, 25)

where ]0() is the zero-order Bessel function of the first

kind.
Inserting Eq. (24) into Eq. (22), we can find that the

auxiliary function @7j(&,p) is given by a Fredholm integral
equation of the second kind in the form,

o0&+ [ "K(E 0 00i(n, )y

(26)
_x 1 dhr+esD,
2 chdl + 3952 ’
where
K& 0.0 = 1 (a= ) I(sDI(s8)ds. @

For the sake of convenience, we define the following

non-dimensional quantities,

n=al, §= a=, (28)
_S ,_B _@Q
s=2 8= .a="", (29)
. 1 _dhntelDy F(5 p)
(&)= Z—+ s (30)
! 2 p Cg4d?1+ 9952 =
&+ €D, T(H,p) an

(0, p) = 5

>

chudh + 9952
Putting Eqs. (28)~ (31) into Egs.

obtained,

1
T(ED+ [ L(EH D U(HpdH=VE,

(26) and (27), the

following Fredholm integral equation of the second kind is

(32)

where

L(ZHp =VEH [ "Ste/s-1)
<Jy(SH)]y(SE)dS,

(33)

Applying the similar way to Egs. (23) and (25), we can
also obtain following Fredholm integral equation of the

second kind,

1
75+ [ L8, B U dH =V E, 34)
where
Ly(Z.H) = VEH [ "S(RIS-1)
35)
xJ,(SH)J,(SE)dS,
r=Rla . (36)
D, TE, p)
oy py= —LL 0 T 37)
2 20 &) =
D, T,(H,p)
039, p) = — XL 0 22 B) (38)
2\7 2024, VH

3. Dynamic Intensity Factors

The mode LI dynamic stress intensity factor( K7;(#)) and
dynamic electric displacement intensity factor( K2,()) in the
Laplace transform domain are determined by the following
formula,

Kiy(p)= lim V2n(x—a)
xa
x{d}.(x,0,p) —ic}.(x,0, p))

_1 &5 _ €
=V (z(,Jra,?1 DYTL, ) ) DT |,
(39)
KB($) = limV2a(x— @)
*{D}(x,0, p) — iDi(x,0, p)} (40)
=%\/Epow;(1).
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From the inverse Laplace transform of Egs. (39) and (40),
we can obtain the dynamic intensity factors in the physical
space in the form,

Kut)
& &
=V ra| (1,+ = DYM(¢) — = D, T, (1) H(¢) |,
dyy dh
41)
K2 (=Y na Dyy(1) H(t) , 42)
where
_ 1 e 00
MO=t2iJens ™ p % @)
and the functions ¥(1,p) and ¥3(1) is calculated

from Egs. (32) and (34).
(1)=1 and Q=I(I'=y-a) in Egs. (32)~
(35) and (43) as B=0, dynamic intensity factors for an

infinite piezoelectric ceramic can be obtained from Eqs. (41)
and (42) in the form,

Since

Ki(t)
. @4)
- (r0+ﬁ5-D0)M(t)—£15-DOH(t)],
dll dll
K2(=V ma DyH(?). 45)

This solution agrees with that of Chen and Yu[2].

4. Numerical results and discussions

To examine the effect of electro-mechanical interactions on
the dynamic stress intensity factors, Eqs. (32) and (34) are
computed numerically by Gaussian quadrature formulas. The
inverse Laplace transformations of the intensity factors are
carried out by the numerical method described by Miller and
Guy[19]. We assume that piczoelectric material properties at
y=0 are same as PZT-5H which are listed in Table 1.

Table 1 Material properties of piezoelectric ceramic at y=0
Properties Symbol Unit
Elastic stiffness & x101 N/m? 23
Piezoelectric constant & C/n’ 17.0
Permittivity & %101 F/m 150.4

160 I ' T ' T '

To=3.2 X 10° N/m?, Do = 4.8 X 10* C/m?

B=0.0
120 B=1.0 —
—-—--B=20
~
18
ﬁj 0.80 —
M=
0.40 e
0.00 | L
0.00 4.00 .00 12.00 16.00
c,t/a
Fig. 2 Stress intensity factor K,/r,V ma versus c,t/a with various
values of B.
1.00 T T T T

g
KA
‘<‘= m
v B=1.0
4 0.40
— -~ D¢/19=2.0 X 10-°C/N
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PO Do/1=-1.0 X109 C/N
’ — 7 Do/15=-2.0 X 10°C/N
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0.00 4.00 8.00 12.00 16.00
c,t/a

Fig. 3 Stress intensity factor K,/r,V¥ 7a versus c,t/a with various
values of Dy/z, at B=L0.

Fig. 2 displays the variations of the normalized dynamic
stress intensity factor K,,/r,V ma against normalized time
cyt/a- with various B values at z,=3.2x10°N/m® and
Dy=4.8x10"'C/m*.

The normalized dynamic stress intensity factor rises rapidly
with time, reaching a peak, then decrease in magnitude to
reach static values. The larger value B , the faster time

arriving at peak values.. Peak values decrease as B value
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increases. We can show that increasing the FGM(functionally
gradient material) gradient is helpful to the reduction of the
dynamic stress intensity factor.

Fig. 3 shows the variations of the normalized dynamic
stress intensity factor K /r,Y za against normalized time
¢y t/a with various D,/r, values at B=1.0. Peak values
Dy/ 7y

values decrease when the negative D,/r, value increases. It

increase as the positive value increases, but peak

shows that the negative D,/r, values helps the reduction of

the dynamic stress intensity factor.

5. Conclusions

The electroelastic problem of a central crack in a
functionally graded piezoelectric ceramic medium under
anti-plane  impact shear was analyzed by the integral

transform approach. The propertics and mass density of the
functionally graded piezoelectric material vary continuously
the The crack boundary
condition is adopted. The traditional concept of linear elastic

along thickness. impermeable
fracture mechanics is extended to include the piezoelectric
effects and the results are expressed in terms of the dynamic
stress intensity factor and dynamic electric displacement
intensity factor. Dynamic stress intensity factor is dependent
on both stress and electric impact loads, but dynamic electric
displacement intensity factor is only related to the electric
impact loading. And the computed results show that dynamic
stress intensity factor can be greatly reduced by increasing
the gradient of the material properties and negative electric

displacement.
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