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Elastic Buckling of Transversely Isotropic Plate with Variable Width

S. J. Yoon™, J. H. Jung“

ABSTRACT

Presented in this paper are the results of an analytical investigation pertaining to the elastic buckling behavior
of transversely isotropic plate with variable width subjected to unequal uniaxial compression forces at the ends
and in-plane shear forces at the sides. The existing analytical solution developed for the isotropic plates is
extended so that the transversely isotropic material properties can be taken into account in the plate buckling
analyses. For the derivation of buckling equation the power series solution is employed. Graphical forms of
results for finding the buckling strength of tapered plates are presented. In addition, the finite element analysis
is also conducted. The results are compared and discussed.
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1. Introduction that are different from the conventional engineering materials.
The mechanical properties of FRP are common to consider as
During the past two decades, the demand of fiber an anisotropic material. But for the unidirectional fiber
reinforced plastics (FRP) have been greatly increased not only  reinforced thin-walled structural profiles (such as pultruded
in new civil engineering construction but also in the . structural sections), the material can be assumed to be the
retrofitting and strengthening of existing structures. Many  transversely isotropic in the classical small-deflection
international industries are currently producing various shapes  problems.
of FRP structural profiles with thin-walled component In this paper, we present the results of an analytical
elements. The theoretical and experimental investigations of  investigation pertaining to the buckling strength of
FRP structural members have been performed and reported to  transversely isotropic plate with variable width. In the design
establish the design guidelines or design criteria of FRP  of bridges, ships, automobiles, and aircraft structures,
structural members. . problems involving the stability of plate having variable width
Composite materials have many attractive characteristics  may arise frequently. Sometimes, for a structure to carry
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variable compressive forces more efficiently, it may be

necessary to alter its thickness and/or width. Therefore, the

knowledge of critical load of non-rectangular plate is
desirable.
In this paper, the buckling problem of transversely

isotropic plate with variable width is solved by employing the
power series solution. The boundary conditions at the parallel
edges are assumed to be simply supported and the boundary
conditions of sides are both simple and/or fixed. The results
are compared with the results obtained by the finite element
method.

2. Theoretical Derivations

Rigorous solutions of plate problems are usually limited to
a few cases. The problem considered in this paper is one of
by the
biharmonic equation for deflection. In this paper, we solved

the difficult - problems to find suitable functions

the elastic buckling problem of transversely isotropic tapered
plate by using the power series solution. The method adopted
in this study was originally developed by Pope [1] for the
isotropic tapered plate.

2.1 Basic Assumptions

v jv‘
S
| S
3
w\‘
—_ E
n ¥ “—
<«
—>
— «
! -
b. N.n_> X < 'Eu Nv bz
l <
-—
— E, bl
> <
—_— -
ey
F a

Fig. 1 Transversely isotropic tapered plate.

Fig. 1 shows the transversely isotropic tapered plate. For
the sake of simplicity, we assumed that the plate is isosceles
trapezoidal, symmetric with respect to x-axis, and the parallel
edges are simply supported.

In this figure, Ey; and Ep; are the moduli of elasticity in
the direction of x-axis and y-axis, respectively. Na and Neo
are uniform normal loads along the parallel ends x=0 and x

=a. a is the length of plate, and b(i=1,2) are widths of
each end. 7is the angle of inclination at both sides.

In addition to the basic assumptions for the orthotropic
plate [2], following assumptions are adopted [1].

(1) Equilibrium is maintained by shear flows along the
sides.

(2) Transverse buckled shape is the same as that across a
rectangular plate of constant thickness under uniform
end load with the same boundary conditions along the
sides.

(3) Middle surface force N, normal to the cross section of

Rty

x-axis vary linearly along the x-axis of plate with a
consistent N,, distribution.

2.2 Middle Surface Forces

In accordance with the assumption (3), the middle surface
force N: can be expressed as:

Nx=Nx1(ﬂ’0+f11)O )]

The most general system of middle surface forces can be
made up of Eq.(1), and, N, and Ny, can be derived under
the prescribed force boundary conditions on the sides of the
plate as shown in Egs. (2) and (3).

Ny=Na(Bo+ B1.X) @
ny=Nx17Y (3)

In Egs.(1),(2), and (3), all undefined variables are given
in Appendix.

The middle surface force N, when the buckling occurs,
can be defined by Eq. (4) following Timoshenko (1961)[3] by
introducing k, the plate buckling coefficient.

7 DD
b%ll 22 (4)

In Eq.(4), Di and D, are the flexural rigidities in 1-1

le = kl

and 2-2 material property directions, and those are defined as

follows:
_ En 83
Dll - 12(1 — Vi2 Vg]) (Sa)
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D=2 (sb)
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In Egs.(5a,b),

vy are the Poisson's ratios in the direction of major and

t is the thickness of plate, and p;; and

minor axis, respectively.

2.3 Buckling Equation

In the classical small-deflection theory, the increment of
the total potential energy of transversely isotropic plate due
to the infinitesimal arbitrary variation &w of the deflection
must be vanished. This condition is given by:

[f aw[Du a w +2Ha
a

a ®

a }aixdy 0

The deflection function of the plate shown in Fig. 1 can
be represented approximately in the non-dimensional form [1]:

W= =) - 0(6) %)
where
X=1+eL, 0=, y=2 =B,y
a X b, b
In Eq.(7), the function @(6) represents an assumed

deflected shape normal to the x-axis and the function AX)
can be found by the energy method.

Eq.(6) may be expressed in the non-dimensional form by
using Egs. (1), (2), (3), (4), and (7) as shown in Eq. (8).
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In Eq.(8), H, ¢, k., and k, are also given in Appendix.
Since @ is an assumed function in expression for the

deflection W, SW can be expressed:

W= 0- 5f ®

Because the variation §f is arbitrary, the integration with
respect to X can be removed from Eq.(8). Substituting Eq.
(7) into the ensuing equation and integrating with respect to
Y, the following differential equation is obtained for f.

2
+ (172 + q2X2+ TzXa)Xzde‘é
(10)
+ (bt a X+ X% x4

+(p0+(]0X2+ TgXa)f=0
Eq. (10) can be solved by expanding f as a power series

as shown in Eq.(11). The function f can be expressed in
terms of Z, which is introduced to improve the convergence

of the series at the ends of the plate at X=1 and
X=1+p.

f= 2z 1)

where

Z=X—2, A=1+0.50

Upon differentiating Eq. (11) and substituting  the
appropriate terms into Eq.(10), one can show, without
difficulty, that all coefficients a4 can be obtained by

recurrence relations in terms of ao, a1, a2, and a3, and then
Eq. (11) can be written in the form:

(12)

In Eq.(12), the B (n=1,2, -
defined as follows:

) with i1=0,1,2, and 3, are

Bu=— gk Calm+ 5,00 B;) (13)
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In Eq. (13), C{n) (=1,2, ---, 8) are given in Appendix, and
Bio, m;, and [ are as follow:

—_ C4(0) — Cr,(O)
Bu=="¢qn’ Bo=" G0
Co(0) Ci(0)
Ba=="G.(0)* B»=~Cy0)

mi=4+i—-n>1, I=8—(n—j)=21

Four linear simultaneous equations are obtained for the
constants a; (=0, 1,2, 3) from the boundary conditions along
the ends. Since the ensuing simultaneous linear equations are
homogeneous, the determinant of coefficient of & must be
vanished to get the solution other than the trivial one. Using
the numerical analysis technique such as the secant method,
the buckling coefficient of plate 4 at wide width with a
certain value of plate aspect ratio ¢, angle of sides 7, and
ratio of axial load Ny/Ni.

3. Buckling of Transversely Isotropic Plate
with Variable Width

3.1 Plate Simply Supported Along the Sides

In accordance with assumption (2), we assume the buckled
form along the transverse direction:
&(8) = cos nf 14
The deflection function consisted with Eqgs. (12) and (14)
satisfy the condition of deflection but does not completely
satisfy the condition of moment for simple support along the
sides of the plate. However, in previous work by Pope
(1962)[1] for the isotropic plate with the same geometric
conditions, it was verified that the total work done on the
plate by the spurious moments introduced along the sides was
Zero.
Adopting the boundary conditions (W=0, M,=0) at
X=1 and X=1-+p, the linear homogeneous simultaneous
equations can be formed and upon setting the determinant of
~the coefficient matrix to zero, the characteristic equation can
be derived.
Using the numerical analysis technique, the buckling
coefficient of transversely isotropic plate k; at the wide width
of plate with respect to length and wide width ratio a/b; can

be obtained, and the results are represented in a graphical

form as shown in Fig.2 when No/Na are 0.8 and 1.0,
respectively.

In order to verify the ensuing equation the transversely
isotropic material properties are replaced with isotropic ones,
and the results are plotted in Fig 3. the results obtained

coincide with published ones [1].

3.2 Plate Fixed Along the Sides

In this case, the deflection function along the transverse
direction can be assumed as:
@( ) = cosh pt — gcos pf 15

In Eq.(16), p is the first positive root (4.73004) of the
Eq. (16), and ¢ is defined in Eq. (17).

sinhg- c03‘22+ coshgsin%=0 (16)
cosh-22

q= N an
cos

The deflection function in Eq. (15) satisfies completely the
boundary conditions along the sides.

Adopting the boundary conditions (W=0, M;=0) at X=1
and X=1+ p, the linear homogeneous simultaneous equations
can be formed and upon setting the determinant of the
coefficient matrix to zero, the characteristic equation can be
derived.

Using a method similar to the case of simply supported
sides of plate, the buckling coefficient k, with respect to a/b
is plotted for a series of values by/hy when Nu/Na=0.8 and
1.0. To verify the accuracy of results, transversely isotropic
material properties were replaced with isotropic ones. Identical
results given in Pope (1962)[1] are obtained. The graphical
form of results is shown in Fig. 4 for transversely isotropic
plates and Fig. 5 for isotropic plbates, respectively.

4. Finite Element Analysis

For the finite element analysis, the commercial structural
analysis program GTSTRUDL (version 2001)[5] is used. The
GTSTRUDL elements used in the modeling of tapered plate
are SBHQ6 (Stretching Bending Hybrid Quadrilateral) and
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Buckling Coefficient of Plate at Wide Width, k,
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Fig. 3 Buckling coefficient of isotropic tapered plate:
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tapered plate: simply supported at sides [4].
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Transversely Isotropic Tapered Plate Transversely Isotropic Tapered Plate
Boundary Condition of Sides : Fixed-Fixed Boundary Condition of Sides : Fixed-Fixed
E, = 2,500 ksi, E,,= 1,000 ksi, G,,= 425 ksi, v,,= 0.33, N, /N, = 0.8 E,,=2,500 ksi, £,,= 1,000 ksi, G,,= 425 ksi, v,,= 0.33, N, /N, = 1.q
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Fig. 4 Buckling coefficient of transversely isotropic tapered plate: fixedly supported at sides (Strongwell, 1997)[4].
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SBHT6 (Stretching Bending Hybrid Triangular) elements, which
are combination of the plane stress and plate bending element.
Fig. 6 shows the elements and the degree of freedom (DOF) at
node 3.
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node 1 node 2
(a) SBHQ6 plate element with DOF at node 3
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8
—

node 4

x

node 1 node 2
(b) SBHT6 plate element with DOF at node 3

Fig. 6 SBHQ6 and SBHT6 elements.
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Fig. 7 Model of tapered plate.
Fig. 7 shows the modeling and loading condition of

isosceles trapezoidal plate. The unit nodal forces are applied
and 0.2 to 1.0 uniform
applied at narrow width. According to the assumption (1), the

at wide width nodal forces are
uniform shear forces are applied at the sides to adjust the

state of force equilibrium.

Transversely Isotropic Tapered Plate
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Fig. 8 Comparison of results (simply supported at the sides).
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Fig. 9 Comparison of results (fixedly supported at the sides).

Results obtained by using derived equation are compared
with the results of finite element analysis. Figs. 8 and 9 show
the buckling coefficient k& when 7=5.71° and »=11.31° at
alby = 1.0.
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5. Discussion and Conclusions

In this paper, the results of elastic buckling analysis for a
transversely isotropic tapered plate subjected to non-equal
uniaxial compression forces at the ends and shear forces at
the sides are presented.

The equations derived in this study were verified by
replacing isotropic material properties instead of transversely
isotropic ones and the ensuing equations were compared with
existing equations which were derived for a tapered plate
with isotropic material. Identical results given in Pope (1962)
were obtained.

The buckling analysis of rectangular plate subjected to
uniform in-plane compressive forces- were also conducted by
using the derived equations, and the results (bold line with
in Fig. 2(b), 3(b), 4(b), and 5(b)) also
coincided with published ones [6, 7].

circled symbol

As a matter of course, increasing a/b, andfor by/by, the
angle of sloped sides was converge to zero, then the plate
changed to rectangular shape. In

results, the buckling

coefficient of tapered plate converged to that of the
rectangular plate.

Finite element analyses were also conducted and the
results were compared with theoretical ones obtained by the
derived equations. The differences between results of both
methods were less than 2% when No/N. was greater than
0.4. But when N,o/N, was less than 0.4, the difference was
increased (maximum 6 %). The differences of results were
also decreased as increasing the a/b, and/or by/b,.

These trends of differences between results may be caused
by assuming the deflected shape in the transverse direction of
the plate as that of the rectangular plate with same boundary
condition under uniform compression. Therefore further study
needs to be performed to find the proper expression of the
deflection function in the transverse direction of tapered plate

when the angle of sloped sides becomes large.
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Cimy=rg+(n=3)n+(n—3)(n—4)r,

Co(n) =go+3rd+(n—2)g,+471)
+{(n—2)(n—3)(qz +57:4)

Cs(n) = M2y + 374+ (n—1)(3q, +674)
+ (n—1)(n—2)(4g;+ 1079A)}

Ciln) = po+ g+ rpd* + n( ) + 3142 +412%)
+ n{n—1)(py+ 6247+ 107,4%)
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Unit Conversion

1 ksi =1 kip/in® = 6.89 MPa = 70.31 kgf/cm’
1 kip = 1,000 Ib = 4.45 kN = 453.6 kef
1in=2.54 cm



