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Vibration Analysis of Special Orthotropic Plates on
Elastic Foundation with Arbitrary Boundaries
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ABSTRACT

A method of calculating the natural frequency corresponding to the first mode of vibration of beams
and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed
and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special
orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the con-
crete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the
deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this
purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on
the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural
frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

1. INTRODUCTION slab is very serious all over the world. Before
making any decision on repair work, reliable non-
The problem of deteriorated highway concrete destructive evaluation is necessary. One of the
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dependable methods is to evaluate the in-situ stiff-
ness of the slab by means of obtaining the natural
frequency. By comparing the in-situ stiffness with
the one obtained at the design stage, the degree of
damage can be estimated rather accurately.

The reinforced concrete slab can be assumed as
a special orthotropic plate, as a close approxima-
tion. The highway slab is supported on elastic
foundation, with free boundaries. Sometimes, the
pair of edges perpendicular to the traffic direction
may be subject to the axial forces, even though
this problem is not treated in this paper.

Several materials should be tested to find out
the best type of pavement material for the future
bridge decks, especially advanced composite
bridge decks. One solution can be a combination
of impregnated woven fibers and toughened poly-
mer with little abrasion property, forming an inte-
gral section with composite deck part. Such pave-
ment will behave as the special orthotropic plate
on elastic foundation with free edges.

Such plates are subject to the concentrated
mass/masses in the form of traffic loads, or the
test equipments such as accelerator in addition to
their own masses. Analysis of such problem is
usually very difficult.

The special orthotropic plate with boundary
conditions other than Navier or Levy solution
types, or with irregular cross section, or with
nonuniform mass including point masses, analyti-
cal solution is very difficult to obtain. Numerical
method for engenvalue problems are also very
much involved in seeking such a solution[6,8].

Most of the civil and architectural structures are
large in sizes and the number of laminae is large,
even though the thickness to length ratio is small
enough to allow to neglect the transverse shear
deformation effect in stress analysis. For such
plates, there are enough number of fiber orienta-
tions for which theories for special orthotropic
plates can be applied, and simple formulas devel-
oped by Kim, D. H. can be used[5,6,9,10].

However, if the plate has boundary condition

other than simple supported, obtaining a reliable
solution is very difficult. The basic concept of the
Rayleigh method, the most popular analytical
method for vibration analysis of a single degree of
freedom system, is the principle of conservation
of energy ; the energy in a free vibrating system
must remain constant if no damping forces act to
absorb it. In case of a beam, which has an infinite
number of degrees of freedom, it is necessary to
assume a shape function in order to reduce the
beam to a single degree of freedom system[11].
The frequency of vibration can be found by equat-
ing the maximum strain energy developed during
the motion to the maximum kinetic energy. This
method, however yields the solution either equal
to or larger than the real one. For a complex
beam, assuming a correct shape function is not
possible. In such cases, the solution obtained is
larger than the real one. Recall that Rayleigh’s
quotient >1 [6] (pp. 189-191).

A simple but exact method of calculating the
natural frequency corresponding to the first mode
of vibration of beam and tower structures with
irregular cross-sections and attached mass/masses
was developed and reported by Kim, D. H. in
1974[4]. Recently, this method was extended to
two dimensional problems including composite
laminates, and has been applied to composite
plates with various boundary conditions
with/without shear deformation effects and report-
ed at several international conferences including
the Eighth Structures Congress and Fourth materi-
als congress of American Society of Civil Engi-
neers.

The merit of the presented method is that it uses
such influence coefficient values, used already for
calculating deflection, slope, moment and shear to
obtain the natural frequency of the structure.
When the plate has concentrated mass or masses,
one can simply add these masses to the plate mass
and use the same deflection influence surfaces to
obtain the natural frequency.

In this paper, the result of application of this
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method to the subject problem is presented. The
effect of concentrated point mass/masses is also
studied.

2. METHOD OF ANALYSIS

In this paper, the method of analysis given in
detail, in the Kim’'s book{6,7] is repeated. The
magnitudes of the maximum deflection at a cer-
tain number of points are arbitrarily given as

w(ij)(1) = W(,j)(1) 1)
where (i,}) denotes the point under considera-
tion. This is absolutely arbitrary but educated
guessing is good for accelerating convergence.
The dynamic force corresponding to this(maxi-
murm) amplitude is
F(i,j)(1) = m(i)Iaij)(1)) wij)(1) (2)

The "new” deflection caused by this force is a

function of F and can be expressed as

w(i,j)(2) = f{m( D] wik,D(1))
=3 4G5k D{mk Do) wlk (D)
3)

where 4 is the deflection influence surface. The
relative (maximum) deflections at each point
under consideration of a structural member under
resonance condition, w(i,j)(1) and w(i,j)(2), have
to remain unchanged and the following condition
has to be held :
w(i (1w @) =1 C)
From this equation, a(i,j}(1) at each point of
(1,)) can be obtained. But they are not equal in
most cases. Since the natural frequency of a struc-
tural member has to be equal at all points of the

member, i.e., axi,j) should be equal for all (i,j),
this step is repeated until sufficient equal magni-
tude of axi,]) is obtained at all (i,j) points.
However, in most cases, the difference between
the maximum and the minimum values of @(i,))
obtained by the first cycle of calculation is suffi-
ciently negligible for engineering purposes. The
accuracy can be improved by simply taking the
average of the maximum and the minimum, or by
taking the value of @(i,j) where the deflection is
the maximum. For the second cycle, w(i,j)(2) in

w(i,))(3) = fmENI @GN wiH@2)) (5)

the absolute numerics of w(i,j)(2) can be used
for convenience.

3. NUMERICAL EXAMINATION

[A/B/A]; type laminate is considered. The mate-
rial properties are ;

E, = 67.36 GPa, E.,=8.12 GPa,
Vi = 0272, Vo = 00328,
G2 =3.0217 GPa, h=0.015m

The thickness of a ply is 0.005m. As the r
increases, Bis, B2, Dis and Das decreases and the
equations for the special orthotropic plates can be
used. For simplicity, it is assumed that A=0°,
B=90", and r=1. Then D(1,1)=18492.902 Nm.

3.1 Finite difference method (F.D.M.)

The method used in this paper requires the
deflection influence surfaces. Since no reliable
analytical method is available for the subject
problem, F.D.M. is applied to the governing equa-

tion of the special orthotropic plates,
o'w o'w o'w
F2Di——r+Dr——
Dy P D; ! D P
=q(X, Y)—kW (6)
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where D[-_—-DH, D2=D22, D3=(D13+2D66).

The number of the pivotal points required, in
the case of the order of error 4°, where 4 is the
mesh size, is five for the central differences. This
makes the procedure at the boundaries complicat-
ed. In order to solve such problem, the three
simultaneous partial differential equations of equi-
librium with three dependent variables, w, My, My,
are used instead of equation(6) [1-3].

M, | dw M,

aXZ f4D6() axlayl T ayz

=—q(x,y)+kw(x,y) (7
a’l 82

M, = *Dxx*’é')‘('wz“”sz—ayvg— ®)
Iw Fw

My =—Dp 2 Dy ay )

If F.D.M. is applied to these equations, the
resulting matrix equation is very large in sizes, but
the tridiagonal matrix calculation scheme used by
Kim[1-3] is very efficient to solve such equations.

3.2 Accuracy of F.D.M

Since one of the few efficient analytical solu-
tions of the special orthotropic plate is Navier
solution, and this is good for the case of the four
edges simple supported, F.D.M. is used to solve
this problem and the result is compared with the
Navier solution.

The aspect ratio used is 1m/1m=1. The mesh

size is 4x =0.1, 4y = 0.1. The deflection at (x,y),
the origin of the coordinates being the corner of
the plate, is obtained, and the ratio of the Navier
solution to the F.D.M. solution is given in Table 1.

Calculation is carried out with different mesh
sizes and the maximum errors at the center of the
plate(loading point) are as follows. Loading is
100N/m’ at the center of the plate.

10x 10 case : 0.14%
20 %20 case : 0.035%
40 x40 case : 0.009%

It should be noted that comparison is made at
the loading point and both methods may have
some errors involved. At most of the other points,
the error is less than 1% even when mesh size is
0.1 x0.1(10x 10), as predicted.

3.3 Influence of the modulus of founda-
tion and aspect ratio of the plate
For this study, the simplest assumption that the
intensity of the reaction of the subgrade is propor-
tional to the deflection, w, of the plate, is used.
Thus, this intensity is given by the expression kw,
where k is the constant called the modulus of the
foundation, in Newton per square meter per meter
of deflection12). The plate geometry and applied

P=40000N

Fig. 1. Plate geometry and loading

Tabie 1. Deflection ratio of Navier solution to F.D.M. solution

Navier / E.D.M.
X(m) 0.1 03 0.5 0.7 0.9
y(m)
0.1 | 0.1005946E+01 | 0.1004916E+01 | 0.1004713E+01 | 0.1004916E+01 | 0.1005946E+01
03 | 0.1001279E-01 | 0.1000028E+-01 | 0.9996814E+00 | 0.1000028E+01 | 0.1001279E+01
05 | 0.1000134E-+01 | 0.9989528E+00 | 0.9985780E+00 | 0.9989530E+00 | 0.1000134E+01
07 | 0.1001279E+01 | 0.1000028E+01 | 0.9996815E+00 | 0.1000028E+01 | 0.1001279E+01

0.9

0.1005946E+01

0.1004916E+01

0.1004714E+01

0.1004916E+01

0.1005946E+01
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load is as given in Figure 1.

The laminate is [0°, 90°,0°)s, with same material

properties as given previously.

The effect of the modulus of foundation, k, and
the plate aspect ratio(a/b) on the deflection at the
loading point is given in Table 2. Figure 2 show

the same result as Table 2, in graphics.

Vibration analysis is carried out by the method

presented in this paper. The result is given in

Table 3. Figure 3 is the graphic presentation of
Table 3.
3.4 The effect of concentrated mass
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ferent aspect ratios and k values

Deflection at the load point (center of the plate) with dif-

Fig. 3. Natural Frequencies for each case of k and a/b

Table 2. Deflection at the loading point (center of the plate)
(k : modulus of foundation[12], Unit : m)

k(N/nv)
Aspect k=10 k=10° k=10 k=10° k=10 k=10"
Ratio
| 0.11033E+00| 0.11091E—01 | 0.11665E—02 | 0.16834E—03 | 0.46369E—04 | 0.14758E 04
2 0.51433E—01 | 0.53099E—02 | 0.67902E—03 | 0.14884E~03 | 0.44541E—04 | 0.14693E~04
3 0.33893E—01 | 0.38341E—02 | 0.64557E~—03 | 0.14333E—03 | 0.44461E—04 | 0.14693E 04
4 0.26165E—01 | 0.34579E—02 | 0.63320E—03 | 0.14163E—03 | 0.44459E—04 | 0.14693E 04
5 0.22175E-01| 0.34139E—02 | 0.61221E—03 | 0.14156E—03 | 0.44459E—04 | 0.14693E—04
Table 3. Natural frequencies for each case of k and aspect ratio, a/b.
(Unit : rad/sec)
k(N/mv)
Aspect k=10 k=10 k=10 k=10 k=10 k=10"
Ratio
1 0.30105E+00 | 0.94950E+00 | 0.29278E+01 | 0.77072E+01 | 0.14685E+02 | 0.26031E+02
2 0.44099E+00 | 0.13722E+01 | 0.38374E+01 | 0.81965E+01 | 0.14984E+-02 | 0.26088E+02
3 0.54310E+00 | 0.16148E+01 | 0.39355E+-01 | 0.83526E+01 | 0.14997E+02 | 0.26088E+02
4 0.61809E+00 | 0.17004E+4-01 | 0.39738E+01 | 0.84026E+01 | 0.14997E4-02 | 0.26088E+02
5 0.82750E+00| 0.17119E+01 | 0.40413E-+01 | 0.84047E4+01 | 0.14997E+-02 | 0.26088E +02




30 4EY - oRE - RS

A=A HEBATEEER

P hp=N g -a b PN cgq 8 o b
1 |- |

| C AT
; L
e s

{CASE A)

(CASE By

a=b=1m, k=10MN/m®, q=1433.25N/m’, [0°, 90°,0°)s
Fig. 4. Loading conditions of a plate

Figure 4. show the loading conditions of a plate
with [0°, 90°,0°]s orientation, with a=b=1m,
k=10MN/m’, and q=1433.25N/m’. N is a real
number. P(i,j) is at the center of the plate. Tables
4, 5 and 6 show the deflection of the CASE B

with N=0, CASE A when N=1, and CASE B
when N=1, respectively.

Table 7. show the deflection at the center of the
plate with different values of N. Table 8 show the
natural frequency of the plate with different val-
ues of N.

4. CONCLUSION

In this paper, the simple and accurate method of
vibration analysis developed by D. H. Kim is pre-
sented. The presented method is simple to use but
extremely accurate. The boundary condition can

Table 4. Deflection of the plate, CASE B, N=0

(Unit : m)
x(m) 0.1 0.3 0.5 0.7 0.9
y(m)
0.1 0.1418E—03 0.1418E—-03 0.1418E—03 0.1418E—-03 0.1418E-03
0.3 0.1418E—-03 0.1418E-03 0.1418E-03 0.1418E—-03 0.1418E~03
0.5 0.1418E-03 0.1418E-03 0.1418E-03 0.1418E-03 0.1418E-03
0.7 0.1418E—03 0.1418E—-03 0.1418E—-03 0.1418E-03 0.1418E-03
0.9 0.1418E—-03 0.1418E—-03 0.1418E—03 0.1418E—-03 0.1418E-03
Table 5. Deflection of the plate, CASE A, N=1
(Unit : m)
x(m) 0.1 0.3 0.5 0.7 0.9
y(m)
0.1 0.15389E-03 0.15476E-03 0.15511E-03 0.15476E-03 0.15389E-03
0.3 0.15712E-03 0.16046E—-03 0.16206E—03 0.16046E—-03 0.15712E-03
0.5 0.15847E—-03 0.16342E-03 0.16718E-03 0.16342E-03 0.15847E—-03
0.7 0.15712E-03 0.16046E—03 0.16206E-03 0.16046E—03 0.15712E-03
0.9 0.15389E—03 0.15476E—03 0.15511E-03 0.15476E—03 0.15389E-03
Table 6. Deflection of the plate, CASE B, N=1
(Unit : m)
X(m) 0.1 0.3 05 0.7 0.9
y(m)
0.1 0.29567E—03 0.29654E 03 0.29688E—03 0.29654E—-03 0.29567E-03
0.3 0.29888E—03 0.30218E-03 0.30376E—03 0.30218E-03 0.29888E—03
0.5 0.30021E—03 0.30511E-03 0.30883E—03 0.30511E-03 0.30021E-03
0.7 0.29888E—03 0.30218E-03 0.30376E—-03 0.30218E-03 0.29888E—03
0.9 0.29567E—-03 0.29654E—03 0.29688E—03 0.29654E-03 0.29567E-03
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Table 7. Deflection at the center of the plate (Unit : m)

Table 8. Natural frequency (rad/sec)

Case A/ Case A/
N Case A Case B Case B N Case A Case B Case B
0 0.1418E-03 0 0.81437E+01
1 0.16718E—030.30883E~03| 0.54133 1 0.77317E+01 | 0.55498E+01 0.71780
3 0.50155E—0310.64321E—03| 0.77976 3 0.44647E+01 | 0.38865E+01 0.87050
5 0.83593E—0310.97758E—-03| 0.85510 5 0.34585E+01 | 0.31664E+01 0.91554
10 |0.16718E—020.18135E—-02] 0.92186 10 | 0.24456E+01 | 0.23349E+01 0.95474
20 0.33437E—02|0.34853E-02} 0.95937 20 1 0.17293E+01 | 0.16887E+01 0.97652
40 |0.66874E—02|0.68291E—02| 0.97925 40 | 0.12228E+01 | 0.12081E+01 0.98798

be arbitrary. Both stiffness and mass of the ele-
ment can be variable. One can use any method to
obtain the deflection influence coefficient. The
accuracy of the solution is dependent on only that
of the influence coefficients needed for this
method. One should recall that obtaining the
deflection influence coefficients is the first step in
design and analysis of a structure. The merit of
the presented method is that it uses such influence
coefficient values, used already for calculating
deflection, slope, moment and shear to obtain the
natural frequency of the structure. When the plate
has concentrated mass or masses, one can simply
add these masses to the plate mass and use the
same deflection influence surfaces to obtain the
natural frequency.

This method is applied to the special orthotropic
plate on elastic foundation with free boundaries.
Such plate is the case of the most of the concrete
highway slab and hybrid composite pavement on
bridge. Finite difference method is used to obtain
the deflection influence surfaces in this paper.

The effect of the modulus of foundation, the
aspect ratio of the plate, and the concentrated
attached mass on the plate, on the natural frequen-
cy is thoroughly studied and the result is given in
tables to provide a guideline to the design engi-
neers.
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