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Elastic Buckling Strength of Orthotropic Plate under Combined In-plane
Shear and Bending Forces.

S.J. Yoon*, B.H. Park** and S.K. Jeong**¥
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ABSTRACT

In this paper result of an analytical investigation pertaining to the elastic buckling behavior of
orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical
solution developed for the isotropic plates is extended so that the orthotropic material properties can be
taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz
method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic
plate under combined in-plane shear and bending forces is presented. Brief discussion on the design
criteria for the shear and bending interaction is also presented.

1. Introduction

In this paper, we presented the analytical results
of buckling of orthotropic plate under combined
in-plane shear and bending forces.

In relation to the problems discussed herein,
Yoon et al.(1998)[1] presented the analytical solu-
tion for the elastic buckling strength of web plate

under in-plane shear and bending forces acting
separately. In the analysis, boundary conditions of
plate was assumed to be simply supported and
Rayleigh-Ritz method was adopted.

In general, in-plane shear and bending forces
are usually acting simultaneously in the web of
beams and/or girders. Therefore, in the buckling
analysis of web of flexural members, not only the
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simultaneous action of in-plane shear and bending
forces but also the interaction between those
forces should be considered.

2. Theoretical Derivations

In this paper we solved the simply supported
orthotropic rectangular plates under simultaneous-
ly acting in-plane shear and bending forces as
shown in Fig. 1 and Fig. 2.

by employing the Rayleigh-Ritz method. The
method adopted in this study was originally
applied by Way(1936)[2] to the isotropic plates.
By the application of this method desired accura-
cy can be achieved by simple expansion of the
series with more terms.

Details of derivation were presented by Yoon et
al.(1998)[1]. Therefore, we explain the differences
of derivation procedure between the present study
and results published already by authors.
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Fig. 1 Plate under simultaneously acting in-planeshear and
bending stresses
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Fig. 2 Numerical factor ¢ for bending stresses
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The deflection w of the simply supported plate

can be taken in the form of double trigonometric
sine-series following Navier's approach(Lekhnit-
skii, 1984)[3].
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The total potential energy, IT, of orthotropic
plate due to combined in-plane shear and bending
forces is given by:

IO=U~(Vy+Vy) (2)

In above equation, U is strain energy of
orthotropic plate under combined loading, V, is
work-done by linearly distributed load, and V, is
work-done by in-plane shear force, respectively.
Each term in Eq . (2) can be defined with nondi-
mensionalized form as follows, respectively:
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In Egs. (4) and (5), the in-plane shear and bend-
ing stresses may be expressed with buckling coef-
ficients k, and k, defined as below following Tim-
oshenko’ s approach:
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The coefficient An, must be chosen to make the
value of ky and/or k, a minimum. Using the
Rayleigh-Ritz method, the minimization of k
and/or k, with respect to each Amn results in the
set of homogeneous linear equations represented
by the Eq. (8). In this equation, y=a/b,m =1, 2, 3,

- n=1,2,3, -, and m+p and n+q are always
odd numbers.
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Eg. (8) involves three unknowns kb, ks, and the
plate aspect ratio a/b. If we neglect the terms
involving kb then the equation reduced to the
buckling problem of plate under in-plane shear
force, and if we neglect the term involving ks then
the equation will be the solution of the buckling
problem for plate subjecting linearly distributed
edge force. Both of these two cases of the prob-
lem had been discussed by authors.

Now, Eq. (8) is expanded up to the ten terms,
and the constants we used here are Ay, A, A,
Az, A, An, Az, As, As, and Ay Then ten
simultaneous linear equations can be written in a
matrix form.

Since the elements of right hand side of equa-

tions are all zero, the determinant of coefficient
matrix of the equations must be vanished to get
the solution other than the trivial one. In the deter-
minant of coefficient matrix as shown above, the
detail mathematical expression for the main diag-
onal elements M s are given in Appendix. By
expanding the determinant one can obtain the
characteristic equation which is a function of ks,
ks, and the plate aspect ratio rm psi "= a/b. For
finding the value of k, and k, at each value of rm
psinumerical analysis technique such as the secant
method is used.
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Fig. 3. Variation of kb at each ks (orthotropic material)
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To verify the accuracy of results orthotropic
material properties (MMFG, 1989)[4] were
replaced with isotropic ones. Identical results giv-
en in Way(1936)[2], Bleich(1952){5], Timo-
shenko(1961)[6], Bulson(1969) [7], and Galam-
bos(1988)[8] are obtained. The graphical forms of
results are shown in Fig. 3 for othotropic plates
and Fig. 4 for isotropic plates, respectively.
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Fig. 4 Variation of kb at each ks(isotropic material)

As shown in Fig. 3 and Fig. 4, the presence of
the in-plane shear forces is found to reduce the
maximum critical compressive stress as expected.

3. In-plane Shear and Bending Interaction

3.1. In-plane Shear Buckling Strength

As given in Eq. (8) and shown in Fig. 3 for the
orthotropic plate and Fig. 4 for the isotropic plate,
we discussed the elastic buckling problems for a
simply supported rectangular plate under simulta-
neously acting in-plane pure shear and bending. If
we neglect the bending terms in Eq. (8) we may
obtain the solution for a plate under in-plane pure
shear. In shear buckling, complexity involved due

to the change of buckling modes which are sym-
metric and antisymmetric (Way, 1936[2], Yoon et
al. 1998[1]).

But for the design of web plate it is desirable to
suggest simple form of equation.

From the investigation equations are proposed
by curve fitting technique following Timoshenko
and Seydel:For the isotropic plate under in-plane
pure shear:

ki=57+ fora/b < 1 (9a)

(a/b)’

ky=3.7+ fora/b > 1 (9b)

5.7
(a/b)’

For the orthotropic plate under in-plane pure
shear:

4.5
k=414 —m forab <1 10a
; @by’ r (102)
ki=4.5+ 41 fora/b > 1 (10b)
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Fig. 5 Shear buckling coefficient vs. b/a
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In the formulation of these equations, the ener-
gy method suggested by Stowell is used and the
values used herein is shown in Fig. 5.

Due to the approximation involved in the ener-
gy method, some amount of errors (less than 7 %)
is involved. In addition, the elastic shear buckling
analysis of infinitely long plate as shown in Fig. 6
is also necessary.

In this plate long edges are assumed to be elasti-
cally restrained and the effect (if &= 0, simply sup-
ported; if e= oo, fixed support) provided by
restraining medium is taken into account. This
result for the isotropic and orthotropic plates is
shown in Fig. 7, respectively(Jung et al. 1998)[9].
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Fig. 6. Infinitely long plate under shear
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Fig. 7. Minimum buckling coefficient for infinitely long plate

3.2. Simultaneously Acting Compression
and Bending Buckling Strength

Detail discussions with results for the analysis
of a simply supported rectangular isotropic and
orthotropic plates are presented by Yoon et al.
(1998)[1]. In order to consider the compression
effect, numerical factor ¢ is adopted as shown in
Fig. 2. The minimum buckling coefficient kb with
respect to the various values of ¢ for the isotropic
and orthotropic plates is also given in a paper by
Yoon et al. (1998)[1].

3.3. Shear Combined with Bending Buck-
ling Strength

To investigate the interaction between in-plane
shear and bending forces, bending and shear inter-
action curves for orthotropic and isotropic plates
are drawn and shown in Fig. 8 and Fig. 9, respec-
tively. As can be seen in Fig. 8 and Fig. 9, the
forms of an interaction curves between Ky / Kp.er
and kJ/k,., are shown for various values of plate
aspect ratio ¢ between 0.5 to 1.0.
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Fig. 8. ko/kecr VS. Ks/ks.r{orthotropic material)

The curves, all lie within a narrow zone and for
design purposes, are normally replaced by a single
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curve in the form of a quadrant of a circle (Bleich,
1952[5]; Bulson, 1969[6]). Thus:
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Fig. 9. ke/koor V8. Ke/ksor{isOtropic material)

where rm o, and rm 7. are the buckling stresses
due to pure bending and pure in-plane shear, and
o and rm 7 are the magnitudes of pure bending
and pure in-plane shear stresses acting on the
plate. More detail discussions relating to the
design formulas for the plates are given by Ble-
ich(1952)[5].

4. Discussion and Conclusion

In this paper the results of analytical elastic
buckling analyses for a simply supported rectan-
gular orthotropic plate subjected to in-plane shear
force (pure shear) and subjected to bending force
(actually bending and compression combined),
respectively, are presented. Rayleigh-Ritz method
is employed in the solution of the problems. The
set of homogeneous linear simultaneous equations

obtained were expanded up to the ten terms.

The equations derived in this study were veri-
fied by replacing isotropic material properties
instead of orthotropic ones and the ensuing equa-
tions were compared with existing equations
which were derived for a plate with isotropic
material. Identical results were observed.

Using derived equations, graphical form of
results was suggested so that the elastic buckling
strength under in-plane shear and bending could
be evaluated. Based on the

results simple design formulas are suggested.

The problems discussed in this paper are solved
analytically by the use of Rayleigh-Ritz method.
Thus, for the completeness of the investigation,
experimental part of the study must be performed.
In addition, in the analytical investigation, further
research on the material nonlinearity, hygrother-
mal effect, and residual stress effect should also
be conducted.
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Main diagonal elements Mjy's are:
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Unit Conversion:

1 ksi = 1000 Ib/in® = 70.31 kg/cm®
11b = 04536 kg
1in = 254 cm



