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Stability of Simply Supported Orthotropic Rectangular Plates under
In-plane Shear and Bending Forces
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ABSTRACT

Presented in this paper are results of an analytical investigation pertaining to the buckling behavior of
simply supported orthotropic rectangular plates under separately acting in-plane shear and bending forces.
Pultruded fiber reinforced plastics are assumed to be specially orthotropic. The existing analytical solu-
tion developed for the isotropic plates is extended so that the orthotropic material properties can be taken
into account in the plate buckling analyses. For the solution of the problems Rayleigh-Ritz method is
employed. Graphical forms of results for finding the buckling strength of plates under in-plane shear and
bending forces are presented.

1. Introduction Such a trend is expected to continue due to

increasing requirements for lightweight, high spe-

In recent years, there has been a greatly cific stiffness and strength, and nonconducting
increased demand for the use of fiber reinforced and noncorroding materials. Many companies in
plastic (FRP) composite structural shapes in new developed countries are currently producing FRP
civil engineering construction and in the rehabili- structural shapes such as I-shapes, channels,
tation and strengthening of existing structures. ~ angles, tees, and tubular shapes (MMFG,
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1989)[1]. Most of the companies producing FRP
structural shapes are adopting the pultrusion
process which is recognized as the most cost
effective manufacturing process. In the pultrusion
process, continuous reinforcing fibers with other
additional fabric layers are pulled from creels and
are passed through a resin bath where fibers are
impregnated with polymer resin. The saturated
fibers are drawn through a preforming and heating
die in which polymerization into a hardened form
occurs. The hardened structural shapes are pulled
and cut to a desired length.

Although FRP structural shapes are readily
available, structural engineers are reluctant to
design with this material due to the lack of reli-
able design criteria (Zureick, 1997)[2]. Thus it is
necessary to investigate the mechanical behavior
of these structural components under various
loading conditions. This paper presents the analyt-
ical study results of buckling behavior of web
plate of I shaped girder made of the fiber rein-
forced plastic composite materials.

1-1. Objective

In this paper, we present the results of an ana-
lytical investigation pertaining to the short-term
compression behavior of separately acting in-
plane shear and bending forces. In the design of
bridges, ships, automobiles, and aircraft struc-
tures, problems arise involving the stability of rec-
tangular plates with various in-plane edge loading.
With loading higher than a certain critical value,
lateral deflection from the initial plane of the plate
takes place. Sometimes, for a structure to carry a
load higher than the critical value may be permis-
sible, but a knowledge of the critical load is
always desirable.

The FRP girder is assumed to be composed of
specially orthotropic homogenéous materials that
could be characterized with four independent elas-
tic constants: the longitudinal Young' s modulus
E;i, the transverse Young s modulus E,;, the in-
plane shear modulus G,,, and the major Poisson’s

ratio vj;. The existing analytical solution devel-
oped for the isotropic plates must be modified so
that the orthotropic material properties can be tak-
en into account in the buckling analyses of the
web of plate girder.

1-2. Previous Work

In relation to the problems discussed we briefly
review the literatures focused on the isotropic and
orthotropic plates under in-plane shear and bend-
ing forces. Most of these literatures are reviewed
by Bleich(1952)[3], Timoshenko(1961)[4], Bul-
son(1969)[5], and Galambos(1988)[6].

For the isotropic plates, Boobnoff(1914) inves-
tigated the simply supported rectangular plate
under combined bending and compressive stresses
acting in the plane of the plate on two opposite
edges. Timoshenko(1921, 1935) was the first to
present a practical solution of the stability prob-
lem of rectangular plates acting in shear by apply-
ing the energy method. He applied the energy
method also to the determination of the critical
stress of simply supported rectangular plates
under bending and compressive stresses and
extended the investigation to the case of combined
in-plane shear and pure bending stresses. The
accuracy of the Timoshenko's results for simply
supported plates was improved by Bergmann and
Reissner(1932) and by Seydel(1933)[7]. Stein and
Neff(1947){7] determined the critical in-plane
shear stresses more accurately than previous
authors by considering symmetric and antisym-
metric buckling modes.

Buckling under nonuniformly distributed com-
pressive stresses acting on two opposite sides of
the plate was considered by Nolke(1936, 1937)[8],
who treated plate with fixed edges. Plates under
combined bending and in-plane shear stresses
were studied by Stein(1934), who gave tables
showing the interaction between the critical longi-
tudinal stresses and the critical in-plane shear
stresses. Papers by Batdorf and Stein(1947) and
by Stowell and Schwartz are also devoted to the
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problem of plates under combined in-plane shear
and uniform longitudinal stresses[7]: Southwell
and Skan(1924) have treated the special case of an
infinitely long plate strip with edge shearing
force[7].

For the orthotropic plates, Lekhnitskii(1947,
1984)[9] reviewed the works relating to the buck-
ling of plates under in-plane shear, bending, and
combined in-plane shear and bending forces. The
orthotropic plate buckling analysis was performed
by the energy method developed by Timoshenko.
Most of the results are sound for the practical
applications but those results are approximated for
simplicity.

2. Theoretical Derivations

In this paper we solved the simply supported
orthotropic rectangular plates under in-plane shear
and bending forces by employing the Rayleigh-
Ritz method. The method adopted in this study
was originally applied by Way(1936){10] to the
isotropic plates. By the application of this method
desired accuracy can be obtained simply by the
series expansion with more terms.

According to the classical orthotropic plate the-
ory (Lekhnitskii, 1984)[9], the strain energy of
bending of orthotropic rectangular thin plates
whose boundaries are simply supported is given
by:

2 2

_”{D,.( )+2Dnv’|(a):v)(i;§) M
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0y ﬂdxdy

The work done by the bending and in-plane
shear forces is given by, respectively:

—ootf [ (1——y)( )dxdy )

In Egs. (1) to (3) w is the out-of-plane deflec-
tion due to in-plane shear and bending forces,
respectively. In Eq. (1) Dy and D are the flexur-
al rigidities in 1-1 and 2-2 material property direc-
tions and Des is the twisting rigidity of plate in 1-2
direction, and v, and v;, are the major and minor
Poisson’ s ratios, and they are defined by, respec-
tively:
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66 = ]2 12 E” ( a,0,C )

These material property directions, coordinate
axes, and the bending and in-plane shear stresses
acting on the plate are shown in Fig. 1 and Fig. 2,
respectively. Plate width and length are b and a,
and the plate thickness t is assumed to be uniform
throughout the plate.

As shown in Egs. (1) to (3) the orthotropic
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Fig. 2. Plate under Bending Stresses
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material properties are only involved in the
expression for the strain energy of plate bending.

For the efficiency of numerical calculation of
the results, the nondimensionatized parameters are
adopted as: '

(5,a,b.c)

Upon substitution of Egs. (5,a,b,c) into Egs. (1)
to (3) and using the chain-rule, we may transform
the equations into the following form, respective-

ly:
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The deflection w of the simply supported plate
can be taken in the form of double trigonometric
sine series following Navier.

w= {;ﬁ nE A sin mzEsin nzn )

Differentiating Eq. (9) and substituting into Egs.
(6), (7), and (8) we may obtain the expression for
the strain energy U, the work done by in-plane
shear stresses V., and the work done by bending
stresses V.

2-1. Elastic Buckling of Plate under In-plane
Shear Stresses
Upon substituting Eq. (9) into Eq. (6), as men-
tioned above, the strain energy U of plate bending
is obtained:
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By substitution of Eq. (9) into Eq. (8) we may
find the expression for the work done by in-plane
shear stresses as following:
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where ks is the in-plane shear buckling coeffi-
cient of plate and it is defined as Eq. (12), and in
Eq. (11) m++p and n+q are odd numbers.
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k= (12)

Therefore, the in-plane shear buckling stress 7.,
can be written in the form following Timo-
shenko(1961)[4]:

__kmDiDy kBB 13
bzt 12(1"V|2V2|) (’lt)‘)z
The total potential energy I7 is given by:
n=U-v;, (14

The coefficient A, must be chosen to make the
value of k, a minimum. Using the Rayleigh-Ritz
method, the minimization of k, with respect to
each A, results in the set of homogeneous linear
equations represented by the following equation:
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where ¢=a/b, m=1, 2, 3, -, n=1,2, 3, -, and
m-+p and n-+q are odd numbers.

Each of the equations represented by Eq. (15) is
associated with a specific pair of values of m and
n. Since m+p and n+q are both odd, m+p+n+q
must be even. If m+n is even, then p+q must also
be even; if m+n is odd, p+q must also be odd.
Each of the homogeneous linear Egs. (15) can
therefore involve only coefficient A;; for which i+j
is either even or odd. Therefore the set of Egs.
(15) can be divided into two independent equa-
tions which can be solved separately, one group
consisting of equations in which i+j is odd and the
other group consisting equations i+j is even. The
set of equations in which i+j is even corresponds
to symmetric buckling mode, and the set in which
i+j is odd corresponds to antisymmetric buckling
mode. Ten equations in ten unknowns were
solved for k, for each type of buckling (symmetric
and antisymmetric). Ten equations may be written
in matrix form. Since the elements of right hand
side of equations are all zero, the determinant of
the equations must be vanished to get the solution
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other than the trivial one. By expanding the deter-
minant one can obtain the characteristic equation
which is a function of k, and plate aspect ratio /b
(¢=a/b).

For finding the value of k, at each value of ¢
numerical analysis technigue such as the secant
method is used. A representative determinant for a
group of equations in which i+j is even (symmet-
ric buckling mode) is shown below.

In the above determinant, detail mathematical
expression for the main diagonal elements Si's
are given in Appendix.

At a plate aspect ratio of 1 the lowest value of
ks that satisfies this determinant is less than the
lowest value of k, obtained from any tenth-order
determinant in which i+j is odd. A representative
determinant for a group of equations in which i+j
is odd (antisymmetric buckling mode) is also giv-
en.
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The buckling coefficient ks with respect to each
value of a/b is shown in Fig. 3.

2.2, Elastic Buckling of Plate under Bend-
ing Stresses
Upon substitution of Eq. (9) into Eg. (7) we can
find the work done by bending forces and the
ensuing equation is given in Eq. (16).
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Since the strain energy of plate bending is given
in Eq. (10), the total potential energy of this case
may be written and using the same procedure dis-
cussed earlier we may find the set of homoge-
neous linear equations represented by the follow-
ing equation:

EH 3 5} Ell E’Z
4 2.2 414 4
m | +2vimn ——+n

{ Ea . 4 Eaxn 4 Ej

+4mznz¢;w}Am
JE1Ea

8em’y’ L& Angng
) proeed] (nz__qz)z

=0 a7n

where buckling coefficient k, is defined as:
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Fig. 3. In-plane Shear Buckling Coefficients, k;

Therefore the buckling stress o, due to bending
forces can be calculated from the following equa-
tion:

_ kbnzw/DHDlz kb7l2\/E||Ezz

bt 212(1-—%2 ) (t:_): )

r

Now, we have to expand the Eq. (17) in which
any integer for m and n can be chosen but n+q
must be odd number. In this study the Eq. (17)
was expanded up to the ten terms. Then, the set of
ten homogeneous linear simultaneous equations
may be written in matrix form. Since the equation
is homogeneous the nontrivial solution exists only
when the determinant of the coefficient matrix
vanished. A representative determinant for the
equations in which n:q is odd is given.
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In the determinant, kg and R/’ s are also given in
Appendix. The determinant is a function of plate
buckling coefficient k, and plate aspect ratio a/b.
Using the same numerical technique the buckling
coefficients k. at each plate aspect ratio a/b is cal-
culated and the results are represented graphically.
As shown in the determinant, the buckling coeffi-
cient is also a function of numerical factor ¢
which represents the shape of bending stresses.
The numerical factor ¢ is defined in Fig. 4. Uni-
form compression is applied if c=0 and pure
bending forces are applied if c=2. Thus the values
of ¢ are varied from O to 2. In order to find the
buckling coefficient, numerical factor ¢ must be
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defined prior to the calculation for k. at each plate
aspect ratio a/b.

To verify the accuracy of results orthotropic
material properties were replaced with isotropic
ones. Identical results given in Bleich(1952)[3],
Timoshenko(1961)[4], Bulson(1969)[5], and
Galambos{1988){6] are obtained. The graphical
form of results is shown in Fig. 5 for othotropic
plates and Fig. 6 for isotropic plates, respectively.
The graph for minimum plate buckling coefficient
ko, at each numerical factor ¢ is also drawn and
shown in Fig. 7 so that the minimum buckling
coefficient can be obtained easily according to the
various values of numerical factor c.
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Fig. 4. Numerical Factor ¢

Orthotropic Material ( Polyester/Glassfiber )
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Fig. 5. Plate Buckling Coefficient k, for Orthotropic Plate

3. Discussion of Results and Conclusion

In this paper the results of analytical elastic
buckling analysis for a simply supported rectan-

Isotropic Material { Structural Steel )
E = 28000ksi, G =11600ksl, v=0.25
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Fig. 6. Plate Buckling Coefficient ks for Isotropic Plate
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Fig. 7. Minimum Buckling Coefficient k, vs. Numerical Factor ¢
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gular orthotropic plate subjected to in-plane shear
force and subjected to bending force, respectively,
are presented. Rayleigh-Ritz method is employed
in the solution of the problems. The set of homo-
geneous linear simultaneous equations obtained
were expanded up to the ten terms.

The equations derived in this study were veri-
fied by replacing isotropic material properties
instead of orthotropic ones and the ensuing equa-
tions were compared with existing equations
which were derived for a plate with isotropic
material. Identical results given in Bulson(1952),
Galambos(1988) etc. were observed.

Using derived equations, graphical form of
results was suggested so that the elastic buckling
strength under in-plane shear and bending could
be evaluated.

In this paper we discussed the short-term elastic
buckling behavior, so the long-term effects such as
creep and shrinkage, temperature and moisture
variations(hygrothermal effect), and degradation
by the ultra violet ray are not taken into account. In
addition, the post-buckling and inelastic buckling
strengths are not considered because of the brittle
nature of fiber and matrix materials. The above
mentioned effects need to be investigated further.
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Main diagonal elements S}’ s are:
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Unit Conversion:

1 ksi=1000 1b/in’
11b =0.4536 kg
‘ Iin =2.54cm



