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A Benchmark Solution for the Buckling of an Orthotropic
Cylindrical Shell under External Pressure
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ABSTRACT

A benchmark solution for the buckling of an orthotropic cylindrical shell under external
pressure is produced. In this approach, the structure is considered a three-dimensional elastic
body rather than a shell. First, a fundamental analysis that formulates the basic buckling
equations with the appropriate boundary conditions in the elasticity context is performed.
Subsequently, the critical loads for pure mechanical loading (external pressure) are derived.
Compared to the classical shell theory approach, the results of this research show that the shell
theory predictions on the critical load can be highly non-conservative when moderately thick

construction is involved.

1. Introduction

In the relatively light weight composite
structures, the problem of stability is of great
concern. This is particularly significant in ap-
plications involving advanced composites be-
cause of the large strength-to-weight ratio and
the lack of extensive plastic yielding in these
materials.

To solve the problems of stability, there
have been lots of efforts to improve the ac-

curacy of the shell theories. In fact, many theo-
ries such as the classical, refined and higher-
order shell theories are available. But, there
are needs of the exact solutions to the prob-
lems of stability from the theory of three di-
mensional elasticity to assess how accurate
the equations of stability established through
the various shell theories predict the critical
conditions.

In this paper the first objective is to in-
vestigate the buckling behaviors of thick ortho-
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tropic hollow cylindrical shells under external
pressure. This work includes (1) providing the
benchmark solution for the critical load under
uniform external pressure from the theory of
three dimensional elasticity, (ii) comparing the
values of the critical loads obtained from the
benchmark solution with the ones established
through the Timoshenko and Donnell shell
theories and (ili) investigating the effect of the
material constants on the critical load. To this
extent, an elasticity solution would provide ac-
curate results for certain simple configurations,
but, more importantly, would form a basis for
comparing various shell theories that could be
potentially used for more complex geometries.
Brush and Almroth[1] give equations re-
garding the stability of shells, based on either
the Donnell's[2] or the Sander's[3] for-
mulations. A theory for isotropic shells present-
ed by Timoshenko and Gere[4] included some
additional terms. Two versions of the Donnell
shell theory[1,2] are most often quoted. One
based on additional shallowness limitations,
and another one (termed "non-simplified"),
suitable for non-shallow shells. Both the (non-
simplified) Donnell[1] and Timoshenko[4] shell
theory equations can be easily extended for
the case of an orthotropic material. Simitses,
Shaw and Sheinman[5] compared the critical
loads derived through Donnell's equation[2]
with those established through Sander's e-
quation[3]. To improve the accuracy of the clas-
sical thin shell theories, for example, Donnell's
shell theory[2], Whitney[6], and Whitney and
Sun[7] included the effects of the transverse
normal strain and the transverse shear
strains, which are neglected in the classical
shell theories. Classical shell theories rely on
the linear variations of mid-surface dis-
placements through the thickness.
Higher-order shell theories, which assume
the displacement field through the thickness
to be approximated in terms of higher-order po-
Iynomial functions of the thickness coordinate,

have been developed by a few researchers(8,9,
101.

However, elasticity solutions to problems of
stability are needed to assess how accurately
the critical loads are predicted by the e-
quations of stability established through the a-
vailable shell theories. Kardomateas[11] deriv-
ed general buckling equations and general
boundary conditions for composite cylindrical
shells from the theory of nonlinear elasticity.
He solved subsequently a simplified definition
(ring approximation) of the problem of buck-
ling of orthotropic cylindrical shells subjected
to external pressure. In this definition, the e-
quilibrium modes were planar, ie. no z (axial)
component of the displacement field and no z-
dependence of the displacements. This work
provides a useful assessment of the limitations
of shell theories in predicting stability loss. In
the present paper, we analyze the buckling
problem of an orthotropic cylindrical shell und-
er external pressure with the equations based
on Kardomateas' earlier work{11]. A nonzero
axial displacement and a full dependence of
the buckling modes on the three coordinates
are assumed, as opposed to the ring ap-
proximation employed in the previous work
[11]. Results will be presented for the critical
load and the buckling modes; these will be
compared with both the orthotropic ““non-shal-
low" Donnell[1] and Timoshenko shell for-
mulations[4]. For the isotropic case a com-
parison with the simplified Donnell[2], the Flu
gge[12] and the Danielson and Simmonds for-
mulas[13] will also be performed. The ortho-
tropic material examples are for stiffness con-
stants typical of glass/epoxy and graphite/
epoxy and the reinforcing direction along the
periphery.

2. Mathematical Formulation

Stability equations are appropriately for-
mulated, and reduced to a standard eigen-
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value problem for ordinary linear differential e-
quations in terms of a single variable (the ra-
dial distance r), with the applied external pres-
sure, p, the parameter. A full dependence on
r, 6 and z of the buckling modes is assumed.

The formulation employs the exact elasticity
solution by Lekhnitskii{14] for the pre-buck-
ling state. Two cases of end conditions are con-
sidered: one with both ends of the shell fixed,
which leads to a much easier derivation of the
pre-buckling stress field, and the other with
both ends capped and under the action of the
external pressure.

2-1. Constitutive Law of Orthotropic
Material

The constitutive law of the orthotropic ma-
terial is

O €iuc€ppcz 0 0 O e
Opo| |C12€2¢C3 0 0 0 £
[ B Cizcxncz 0 0 O .
| |0 0 0 cu 0 0 Yor
Tz 0 0 0 0cy 0 e
Tro 0 0 0 0 ¢ Ces Yo

where r,8,andz are radial, circumferential
and axial coordinates, respectively and c; are
the stiffness constants (I have used the no-
tation 1=r,2=6,3=z).

Inversely, the strain-stress relations of the
orthotropic material is

&r apapas 0
Ego A Ay a,; 0
& Q313 Gy a3 0
Yer 0 0 o0 Ay
Y= 0 0 0 0 g
Yo 0 0 0 0 0 ag |%e

[ow I e B oo B o
[ B e B vue [ o

where g;; are the compliance constants.

The compliance components in terms of en-
gineering constants are

| 1 Vai Vi
_ = = 0 0 0
E, E, E;
Viz 1 Vi
- — —— 0 0 0
E, E, E,
Vi V3 1
—_— e () 0 0
E, E, E,
[a;]=
1o o o —G-l- o 0
23 0
1
0 0 0 0 —
0o 0o o 0 0 OCn

where E,E,andE, are Youngs moduli in

r,0,andz directions, respectively, and
Gy, Gy and Gy in the
8—2z,z ~r, and r — 8 planes, respectively.

are shear moduli

2-2. General Buckling Equations

Let us consider the equations of equilibrium
in terms of the second Piola-Kirchhoff stress
tensor ¥ in the form

div (2 . FT) = 0, .................................. (Eq 33)

where F is the deformation gradient defined
by

where V is the displacement vector and I is
the identity tensor.
Notice that the strain tensor is defined by
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More specifically, in terms of the linear strains:

ou lov  u _aw
T T Tt =T
................................. (Eq 43)
_lau+§_v__1 e_au ow
€r9"7'_9 or Fo o= 3 3 B
e&zg"z_.,_%%‘;_’ ............................. (Eq. 4b)
and the linear rotations
20, = l_a_i 91 :a_u_._a_”i
rog oz’ %  or
ov v 1du
20, _gr__*_?._?.a_e., .................. (Eq 4c)
the deformation gradient F is
- . . -
1+en 5 o — O —2—e,7+a)9
1 1
F= 5 ot l+eg Eeez—co, - (Eq. 5a)
—;je,z—a)e —2—892""&} 1"“62

and the equilibrium Eq. (3a) gives

) 1 1
3 [o”(l +er)+ r,g(Eerg - )+ 'r,z(ierz + cog)] +

1
A+ } aa 5 [r f1+en )+ ow( e, g0 y+Ty (—2"61—2 + wg)} +

+-§— [rm(l + € ) +T, (le,g —-a)+ oa(-l—en + mg)} +
oz 2 2

+%[ (14 e ) — Ope(1 “*‘egg)‘f“'rrz('%‘erz +co9):{ -

1 1
_T[T&(—z—e& - w,)—;-z';re(gz:] =0, e (Eq. 5b)
19

T30

+ —a{r,,(—l—e,ﬁ W)+ To, (1+ege) + oz(leez—a),)}r
0z 2 2

[79( € g+ 01 +699)+T82(%—e& “w‘):l"‘

r[o'rr( 3re+ak)‘*"fe(1+eee)+'fn(—eez ﬂ})}

~ |- QJ

[G,r (—;—e,g-sz )'*‘099(‘%-@,9—0):) + T (%e o~ )}r

1

+ 7{1&(%en+we}+r,g(2-}en+ew)} =0 - (Eg. 5¢)

—a% I:T,z (—;—e,z — WeH Ty, (%egz + o o (1+ ez)} +
+ —g— [G,T (=er~wg)tt, 9( €g + O W1 (1+ex ):l
19

1 1
+ -'—" -a"é‘ {tr g('é‘erz "wa)'}'o.eg(—z'e&z'i"a)’ )+T&: (1+ezz )}_}‘

\]»—x

c;,,(—e,z—cog) + 7, g(ue&+co,) + Tn(1+eu)J

At the critical load there are two possible in-
finitesimally close positions of equilibrium. De-
note by ug, vg, wy the r, 8and z components of
the displacement corresponding to the primary
position. A perturbed position is denoted by

U=ugt0oa,; v=ve+tow;; w=wy+ow,,

where o is an infinitesimally small quantity.
Here, ou,(r,8,z), avi(r,0,z), owy(r,6,z) are
the displacements to which the points of the
body must be subjected to shift them from the
initial position of equilibrium to the new e-
quilibrium position. The functions u,(r, 6,2),
vi(r, 6,z) ,wy(r, 6,z) are assumed finite and o
is an infinitesimally small quantity in-
dependent of r, 6,z.

Using the perturbed displacement field (Eq.
6a) and the non-linear strain-displacement re-
lations (Eq. 3c), we obtain the following strain
components in the perturbed configuration

g = 80 S ag‘} + azgz ............................. (Eq 6b)
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where g} are the values of the strain com-
ponents in the initial position of equilibrium,
g; ' are the strain quantities corresponding to
the linear terms and g;”’ are the strain quan-
tities corresponding to the quadratic terms.
From these strain components and the stress-
strain relations (Eq. 1), we obtain the stress
components in the following manner

Gij — 03 + aO',; + w”-q’]’ ......................... (Eq' 6c)

Substituting the perturbed strains (Eq. 6b)
and the perturbed stresses (Egq. 6c) into the e-
quilibrium equations (Egs. 5b, 5¢, 5d) and
linearizing with respect to the a, we arrive at
a system of homogeneous differential e-
quations. Assuming that ¢ and @) are small
at the initial position of the equilibrium, we
can use the linear classical equilibrium e-
quations for the initial position. For the per-
turbed position of equilibrium, we assume that

0
eij;

@) and ¢;' are small but ;' are finite.
This assumption is characteristic of the sta-
bility phenomena, i.e. the shift from the po-
sitions with small rotations to the positions
with finite rotations.

From the assumptions, Kardomateas[11]

derived the following buckling equations:

a N ' 1 a 1 '
5(0};— ~ Trel: '+ TR W) + 7%(@9 ~ Ofo: '+ T4,
9, , d 1., ,
@) + (T '~ 73,0 ) + = -(0R ) + 7(Or '~ 0o
+ T Wy + TR0 = 2T Y= O, e (Eq. Ta)

) , . 19 : )
g(1,9 + o}y —Tgwr')'i-?%(cw‘f"lfng -

) , ] 1 ,
g0 N+ -a;(rez + e )+ > (-o%a )+ 7(21:,9

+ 030 "~ O '+ 15,0 — T30 ) =0, - (Eg. 7b)
d

1 1 1 a 7 t
3 (t='— ohwp' + Tpx ) + 755(7& = Trey' +

Ofetr ')‘*"a%(ozz -y + 0 )+ %(ﬁ'z '~ ohwy’
+T99a)r')=0 ................................................ (Eq 70)

In the previous equations, o} and @) are the
values of o; and ®; at the initial equilibrium
position, i.e. for u =uy,v=v, and w =w, and
oy ' and w; ' are the values at the perturbed po-
sition, ie. for u =u,, v =v; and w =w,.

The boundary conditions associated with (3a)
can be expressed as:

where 7 is the traction vector on the surface
which has outward unit normal N = ({, m,n) be-
fore any deformation. The traction vector ¥ de-
pends on the displacement field V:(u,v,w).
Again, following Kardomateas(11], we obtain
for the lateral and end surfaces:

(O "= TR "+ TR0 ) + (5,0" — OBpti '+ T 05 ) 1 +
+ (T '~ g '+ 08wy =p (@ 'm — wy'n),
................................. (Eq. 92)
(To'+ 02w, "— T80 ) + (O’ + T '— 1300 Y +
+ (T '+ 120 '~ 02y W =—p( T~ m),
................................. (Eq. 9b)
(T '+ 1000 = 08 )] + (T, '+ O '~ Tp0p") 11 +
+(0z "+ 100 '~ 2wy =p (@l — ax 'm).
................................. (Eq. 9¢)

2-3. Benchmark Solution

Pre-buckling State. The problem under con-
sideration is that of an orthotropic cylindrical
shell subjected to a uniform external pressure,
p. Two cases will be considered: one where
both ends of the shell are fixed (this simplifies
the derivation of the pre-buckling stress field),
and the other where the ends are capped and

under the action of the external pressure, p
(this would more closely resemble the state of
loading in a submersible).

Let r, be the internal and r, the external ra-
dius (Fig. 2.1) and ¢ =ryf,. In terms of
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the stress field for the simpler case of a cyl-

inder with both ends fixed, is given directly
from Lekhnitskii[14] as follows:

0% =p(C k14 Cort1) ) woovvvnvrnnnnnnns (Eq. 11a)
08, =p(C k1 = Cor-1) | woovrevnene (Eq. 11b)
0% =—p(C ay3t+kay i1 +C2‘113 —kay, reke1y
3 Q33 ’
............................... (Eq llc)
0 =78 =T =0, v (Eq. 11d)
where
1 5t
T e e C =c¥ .
T =R i Py
............................... (Eq lle)

For the case of a shell with end caps under
the action of the external pressure, the
stresses that satisfy the equilibrium equations
in the pre-buckling state, arise from a dis-
placement field accompanied by deformation

\\_‘.....—/‘/ =

Fig. 2.1. Cylindrical Shell Under External Pressure.

(assume ¢y # ¢y 2t

Con —
ug(r)=Crk + Cogr* +—%3————C£Dor ;o vee0;

Satisfying the inside boundary traction-free
condition, 67|, = 0, allows one to eliminate D,

and obtain the radial stress in the form:

0% = Crolenk +c1p) (1 =rk 1) + Cop(—c1ik +c19)
=ik, (Eq. 12b)

the hoop stress in the form:

060=C1ol(c 1ok +cp)r* = (cpk +ci)frk 1]+
+ Coql(— ek +ep)r*t = (—cpk + ) fri*],
(Eq. 120)

and the axial stress in the form:

02 =Cro[(cy3k +cop)rkt —(cqik +cr)grk~ 1+
+ Col(—ey3k +ep)r=*1—(—cpk +cperi**].
(Eq. 12d)

In the previous relations, f and g are in terms
of the stiffness constants:

_ (c1ate)(Ca3 = €13) +Cos(Cs — C3)
(e te)cm—ca) +eplcn —cz)

g= ¢ —cf +eas(c — )
(c11+cpCas —€13) +Ci3(€1r — C0)

(Eq. 12e)

The constants C,, and C,, are linearly de-
pendent on the external pressure, and are
found from the condition of external pressure:

O’P’.Irzz_p y et (Eq. 13a)
and the axial foree developed due to the pres-
sure on the end caps:
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J o%rdr =— 23 | o (Eq. 13b)
r1
as follows
oy BaBo o BBy
O BuBr— BBy T BubBrn—Buby
............................... (Eq’ 130)
where

Bu=(cuk +cp)rst k1)

Biz=(—cuk +cp)rs*t —ri*¥1), - (Eq. 13d)

k+1 .. pkt+l
2(Cl3k+C23){r2+ ry

Pn= k+1) - r2

)~ {cuk +e) grit

) , Seesmenrereesssscitiit s (Eq 138)

2(—cipk +cy) rft —rptH
a-0»

w2
c) gri-t(

Bn= )= (— ek +

2

L 1 URO— (Eq. 13D

Hence, it turns out that in both cases the pre-
buckling shear stresses are zero and the pre-
buckling normal stresses are linearly de-
pendent on the external pressure, p, in the
form:

03 =P(Cij,0 + Cij,lrk—l + Cij’zr-k-l) L eereeenrens (Eq ]_4)

This observation allows a direct im-
plementation of a standard solution scheme,
since, as will be seen, the derivatives of the
stresses with respect to p will be needed, and
these are directly found from (14).

Perturbed State. Using the constitutive re-
lations (1) for the stresses o;;’ in terms of the

strains ¢;

(4) for the strains ¢;’

the strain-displacement relations
and the rotations w;' in
terms of the displacements u,, v, w,, and tak-
ing into account (11d), the buckling equation
(7a) for the problem at hand is written in

terms of the displacements at the perturbed
state as follows:

Co “1a9
) sz‘“’ +(ces+ —“) Hess

Culey, + )

o O ¥ o
S M +(C12+C66_‘_§‘6“) = ~(Cn*ewt—)
v ol w
‘f;i+(013+055—7)w1,n+(c13' rl'z =0.

.............................. (Eq 15a)

The second buckling equation (7b) gives:

v, v, o) — 0. V1
Ve M (T s

)(Vl.rr

(ces+

vy, ol o
—)‘*" 22 +( Cast )V1p+(066+c1z”‘“2—)

u O U
O 4 (costCnt 69)-—12’3+(c23+c44——%g—)

1d u
L e

o
.............................. (Eq. 15b)

In a similar fashion, the third buckling e-
quation (7c) gives:

ol Wi, Ol Wi
(Css"“i‘)(wm- +—rl’)+(c44+"2—) 2

ol
+C33Wy +(¢'13+Css‘—“2 Yy, +(cpn+css—

N _.j‘gﬁ V1,6 ldd’r
)T teatenm o) Sy
(wl,r _ul,z)::o' ......................................... (Eq' ]_50)

In the perturbed position, we seek equilibrium
modes in the form:

ur,8,z)=U()cos nBsin Az ;
vy(r, 0,z)=V(r)sinnOsin Az ,
wy(r, 8,z)=W(r)cosnbcos Az ,

where the functions U(@), V() W() are
uniquely determined for a particular choice of
n and A.
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Substituting in (15a), we obtain the fol-
- lowing linear homogeneous ordinar differential

equation for ry <r <ry:

U'(rye,+U (r) +U(r)

Cog+ Ceht?

A2 n?
- 2, k2 OO RAJNS !
[ cssk m %y "ezrz}

(crztceen

+V’(r)[ . —oge-é”?}wr)

{-(czz-l—c%)n iy
r? “or

2} +W (r)
[—— (c13+css) A+ o2 —g—:l +W(r)cgys ~ c13)-é— =0.
.............................. (Eq 173)

The second differential equation (15b) glves

for 7 r1 r<ry

V”<_r>[c66+~9§}+w >[i‘6 i(oﬁ———) :'-;'i-}

’ : Ceg + Coht A2 ol ’
+V(r){5c4412~—#"673?———‘ 0'27 —2;— —‘2,‘—}
. (crp+cee)n V
LU >[———-———, +od 4 U()

[~Carew 5 dryfy v o g W)

[(623 + CM) n..i_'_ - ol n%:l =0, creereesnenenn (qu 17b)

In a similar fashion, (15¢) gives for ry<r <rj:

" on yon Css 0% o}
w (r)[C55+—2_—:I+W (r)('—r-“i"?‘f'-—-z—)""

3

n? n2 ’
W(r) (—csh? —044‘;‘2“_ 5r_2)+U ")

I:(CB"‘CSS)A“ on ;} +U() |:(Cz3 +Css)" ~of 5‘;

- 03 '—;ZL—} + V(r)[(cz,3 + CM)H% - o“eyz—l—jI =0.

All the previous three equations (17) are
linear, homogeneous, ordinary differential e-
quations of the second order for U(r),V(r) and
W(r). In these equations, o2(r), o%(r), o2()
and of'(r) depend linearly on the external
pressure p through expressions in the form of
(14).

Now we proceed to the boundary conditions
on the lateral surfaces r=r;, j=1,2. These
will complete the formulation of the eigen-
value problem for the critical load. From (9),
we obtain for [ =+ 1, m =n =0:

On'=0;T/ +(oh +p) @ '=0; 7, '—(°9+Pj)“’9'=_
0 , atr =ry ',‘2' ............. e (Eq 18)

where p; =p for j =2, i.e. r =r, (outside boun-
dary) and p; =0 for j ~1, ie. r=r, (msxde
boundary).

Substituting in (1), (4), (16) and (lld) the
boundary condition o-'=0 at r=r; ] —1 2

gives:

V'GP en+ V) +nV )] 72 = cudWi) =0,
j=1,2 e (Eq. 19a)

The boundary condition 7,4'+ (0% +p;) @ '=0

atr=r;, j=1,2 gives

V') I:c66+(63 +p;) %] + V() +nU ()]
[—-666—}-(0’9 +p]) }_] _L, j :1’2 ....... (Eq' 19b)
217

condition
Tz'— (0% +p;) wy'=0at r =r;, j =1, 2 gives:

In a similar fashion, the
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AU(r;) {CSS“(O’g’*‘P;)%}*W r;) [Css'*(crg“*'Pj) %}

(Eq. 19¢)

For the simpler case of fixed ends we seek e-
quilibrium modes in the form:

u,(r,0,z)=U(r)sinnfcos Az ;
vy (r, 6,z)=V(r)cos nOcosiz ,
wy(r,0,z)=W({)sinnfsin iz

where again the functions U(r), V(r), W(r) are
uniquely determined for a particular choice of
n and A The corresponding differential e-
quations and boundary conditions are ob-
tained in a similar fashion.

Equations (17) and (19) constitute an eigen-
value problem for differential equations, with
the applied external pressure, p , the paramet-
er, which can be solved by standard numerical
methods (two point boundary value problem).

Before discussing the numerical procedure

~ used for solving this eigenvaliue problem, one -

final point will ‘be addressed. To completely
satisfy all the elaéticity requirerhents, we
should discuss the boundary conditions at the
ends.

From (9), the boundary conditions on the
ends f=m =0,n =+1, are:

Tz '+ (0% +p)wy’ =031, '~ (0% +p) & '=0; o=’
=O,atz:O’L ................................ (Eq'z())
Since o.' varies as sindz, the condition
oz '=0 on both the lower end z =0, and the
upper end z =1, is satisfied if

It will be proved now that these remaining
two conditions are satisfied on the average. To
show this we write each of the first two ex-
pressions in (20) in the form: S; = 5 '+ (62+4p)

cag’a_ndSez% Ty, '— (08 +p) &, integrate

their resultants in the cartesian coordinate sys- A
tem (x YZ), e.g the x-resultant of §. is:

j j Sy (cos ) (rd 6) dr.

Smce Tz’

. and

and «,” have the form of

F(r)cosnOcos Az, ie. they have a cosn 6 vari-
ation, the x-component of S has a cosz 6 cos 6
variation, which, when integrated over the en-
tire angle range from zero to 2z will result in
zero if n is not equal to one. The y-component
has a cosnfsin@® variation, which, again,
when integrated over the entire angle range
will result in zero. Similar arguments hold for
Sg, which has the form of F(r)sinn 6cos 1z
Moreover, it can also be proved that the sys-
tem of resultant stresses (20) would produce
no torsional moment Indeed this moment

would be given by _[ j Se (rd 6) rdr. Since 15’

and @ ' and hence & have a sinn 0 variation,
the prevmus integral will ‘be in the form

J' f r2F(r)s1nn 0 cos /'derd@ which when in-

tegrated over the entire 8-range from zero to
2, will result in zero.

Returning to the discussion’ of the eigen-
value problem, as has already been stated, e-
quations (17) and (19) constitute an eigen-
value problem for second-order, linear, or-
dinary differential equations in the r variable,
with .the applied external pressure, p, the
parameter. This is a standard two-point, boun-
dary-value problem. The relaxation method
was used (Press et al[15]) which is based on re-
placing the system of ordinary differential e-
quations by a set of finite difference equations
on a grid of points that spans the entire thick-
ness of the shell. For this purpose, an equally
spaced mesh of 241 points was employed and
the procedure turned out to be highly efficient
with rapid convergence. As an initial guess for
the iteration process, the shell theory solution
was used. An investigation of the convergence
showed that essentially the same results were
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produced with even three times as many mesh
points. The procedure employs the derivatives
of the equations with respect to the functions
U, V, W, U,V W' and the pressure p ;
hence, because of the linear nature of the e-
quations and the linear dependence of ¢} on p
through (14), it can be directly implemented.
Finally, it should be noted that finding the crit-
ical load involves a minimization step in the
sense that the eigenvalue is obtained for dif-
ferent combinations of n,m, and the critical
load is the minimum. The specific results are
presented in the following.

3. Discussion of Results

Before discussing numerical results, we
should emphasize the followings: a non-linear
pre-buckling solution may well be used and
therefore, render an exact elasticity solution to
this bifurcation problem. Yet it is expected
that the differences between the present solu-
tions, which are based on a linear pre-buckling
solution and one based on a non-linear pre-
buckling solution would be negligible. Furth-
ermore, a non-linear pre-buckling solution
would make the problem much more difficult
to solve.

Results for the critical pressure, normalized
as

3
r3

SO Eq. 22
E, k3 Ea. 22)

p=p
were produced for a typical glass/epoxy ma-
terial with moduli in GN/m? and Poisson's ra-
tios listed below, where 1 is the radial (r ), 2 is
the circumferential ( 8 ), and 3 the axial ( z )
direction: £, = 14.0, E, = 57.0, E; = 14.0, Gy, =
5.7,Gx =57, Gy = 5.0, v, = 0.068, v,; = 0.277,
v, = 0.400. It has been assumed that the rein-
forcing direction is along the periphery.
In the shell theory solutions, the radial dis-
placement is constant through the thickness

and the axial and circumferential ones have a
linear variation, i.e. they are in the form:

uy (r,6,z)=Uycosn@sin Az ,v, (r, 6,z) =

l:V0+r—%(Vo+n UO)} sin n Osin Az

wi(r,6,z)= [WO—(r —R)/lU(,] cosnfcos Az .

where Uy, Vo, Wy, are constants (these dis-
placement field variations would satisfy the
classical assumptions of er =e,p=e€- =0).

A distinct eigenvalue corresponds to each
pair of the positive integers m and n. The pair
corresponding to the smallest eigenvalue can
be determined by trial and error.

As noted in the Introduction, a comparison
with thin shell theories will be done because
data for the bifurcation load from thick shell
theories are not available. One of the classical
theories that will be used for comparison pur-
poses is the “non-shallow" Donnell shell theo-
ry formulation[1]. The other benchmark shell
theory used in this paper is the one described
in Timoshenko and Gere[4]. In this theory, an
additional term in the first equation, namely,
~N§ (vg +u,), and an additional term in the

second equation, namely, RN’ v, exist (refer
Appendix A).

In the comparison studies we have used an
extension of the original, isotropic Donnell and
Timoshenko formulations for the case of ortho-
tropy. The linear algebraic equations for the
eigenvalues of both the Donnell and Timoshen-
ko theories are given in more detail in Ap-
pendix A.

Concerning the present elasticity for-
mulation, the critical load is obtained by find-
ing the solution p for a range of n and m, and
keeping the minimum value. Tables 3.1 and 3.
2 show the critical pressure, as predicted by
the present three-dimensional elasticity for-
mulation, and the one, as predicted by both
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the “non-shallow” Donnell and Timoshenko
shell equations for the glass/epoxy and
graphite/epoxy material, respectively (case of
capped ends under pressure). It should be not-
ed that the condition for the case with both
ends capped does not provide any local res-
traint on the deformation and is used simply
to provide a means of representing the axial
load due to external pressure in a fully sub-
merged closed structure.

A length ratio 14, = 10 has been assumed. A
range of outside versus inside radius, rif,
from somewhat thin, 1.05, to thick, 1.30, is ex-
amined. The following observations can be
made:

(1) For both the orthotropic material cases,
both the Donnell and the Timoshenko bi-
furcation points are always higher than
the elasticity solution, which means that
both shell theories are non-conservative.
Moreover, they become more non-con-
servative with thicker construction.

(2) Although it is a commonly accepted notion
that the critical point in loading under ext-
ernal pressure occurs forn =2 and m =1, it
was found that this is not the case for the
strongly orthotropic graphite/epoxy ma-
terial and the moderately thick con-
struction (Table 3.2); for this case, the
value of m at the critical point is greater
than 1. However, in all cases n =2.

(3) The bifurcation points from the Timoshen-
ko formulation are always slightly closer to
the elasticity predictions than the ones
from the Donnell formulation.

(4) The degree of non-conservatism is strongly
dependent on the material; the shell theo-
ries predict much higher deviations from
the elasticity solution for the graphite/
epoxy (which is also noted to have a much
higher extensional-to-shear modulus ratio).

Table 3.3 gives the predictions of the Don-
nell and Timoshenko shell theories for the
glass/epoxy material, in comparison with the

Table 8.1 Comparison with Shell Theories for
Glass/Epoxy Orthotropic with cir-
cumferential reinforcement, 14,=10
Critical Pressure, p = pr3AE %)

Moduli in GN/m®:E,=57, E =E,=14,
G, =50, G,=G,=57 Posson’s ratios:
v,,=0.068, v,,=0.277, v,, = 0.400

Capped Ends, n=2,m =1

Donnell Shell' Timoshenko Shell’

r{r,  Elasticity

(% Increase) (% Increase)
1.05 0.2813  0.2926(4.0%) 0.2914 (3.6%)
1.10 0.2744  0.2973(8.3%) 0.2962 (7.9%)
1.15 0.2758  0.3133(13.6%) 0.3122(13.2%)
1.20 0.2764  0.3308(19.7%) 0.3296(19.2%)
1.25 0.2755  0.3485(26.5%) 0.3473(26.1%)
1.30 0.2733  0.3662(34.0%) 0.3649(33.5%)

'See Appendix A

Table 8.2 Comparison with Shell Theories for
Glass/Epoxy Orthotropic with cir-
cumferential reinforcement, i/#,=10

Critical Pressure, p =pr3AE k%)

Moduli in GN/m?: E,=140, E =99,
E,=91, G, =59, G,=47  G,=43
Posson’s ratios: v, =0.020, v, =0.300,
vy, = 0.490 Capped Ends

rir Elasticity Donnell Shell' Timoshenko Shell’
1 (n,m) {n,m)(% Inaease) (n,m)(% Increase)

1.05 0.2576(2,1) 0.2723(2,1) (5.7%) 0.2713(2,1) (6.3%)

1.10 0.2513(2,1) 0.2871 (2,1) (14.2%) 0.2861 (2,1) (13.8%)

1.15 0.2347(2,2) 0.3037(2,2) (29.4%) 0.2995(2,2) (27.6%)

1.20 0.2166(2,3) 0.3183(2,2) (47.0%) 0.3111(2,3) (43.6%)

1.25 0.1978(2,3) 0.3310(2,3) (67.3%) 0.3198(2,4) (61.7%)

1.30 0.1808(2,4) 0.3429(2,4) (89.7%) 0.3261 (2.5) (80.4%)
'See Appendix A

elasticity one for the case of fixed ends. A com-
parison with Table 3.1 reveals that the end
conditions (fixed ends versus capped ends und-
er pressure) have little influence on the crit-
ical load. However, two observations can be
easily made: the bifurcation load for the capp-
ed ends is always slightly smaller than the
one for the fixed ends, and the Timoshenko bi-
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Table 8.3 Comparison with Shell Theories for
Glass/Epoxy Orthotropic with cir-
cumferential reinforcement, I4,=10
Critical Pressure, § = pr3AE 4%

Moduli in GN/m?:E,=57, E,=E,=14,
G, =50, G,,=G,=57 Posson’s ratios:
v, =0.068, v,,=0277, v, =0.400

Fixed Ends, n =2,m =1

Donnell Shell' Timoshenko Shell’

r{r,  Elasticity

(% Increase) (% Increase)
1.05 0.2860  0.2972(3.9%) 0.2972(3.9%)
1.10 0.2789  0.3017(8.2%) 0.3017(8.2%)
115 0.2803  0.3178(13.4%) 0.3178(13.4%)
1.20 0.2808  0.3354(19.4%) 0.3353(19.4%)
1.25 0.2798  0.3532(26.2%) 0.3531(26.2%)
1.30 0.2776  0.3709(33.6%) 0.3708(33.6%)

'See Appendix A

furcation point is almost identical to the one
for the Donnell point for fixed ends, unlike for
capped ends.

Hence, it can be concluded that the ad-
ditional term in the second shell theory e-
quation, namely, RN% , (which would be zero
for fixed ends) is primarily responsible for the
differences in the two shell theories and also
for the conservatism of the Timoshenko shell
theory when pure axial loading is considered.
Particularly simple formulas can be obtained
for isotropic materials.

Set

o= D e (Eq. 24)

where R =(r,+r,)y2 is the mean shell radius.
With some additional shallowness as-
sumptions, a direct formula can be obtained
from the Donnell shell theory, as follows:

Eh A s ) S
R | 12R(1-¥)  n?  n¥m*n?? |

DPs-pomnett =

For isotropic materials two other shell theo-
ries, namely the Flugge[12] and the Danielson
and Simmonds{13] have produced direct
results for the critical external pressure in
shells and should, therefore, be compared with
the present elasticity solution. The expression
for the eigenvalues derived from the Fligge e-
quations [12], pr , and the more simplified but
just as accurate one by Danielson and Sim-
monds [13], pps , are:

Eh Or ps
R m2 i+ nf - G £ )
.............................. (Bq. 25b)

Prrps1=

where the numerator for the Fligge theory is

Or :1_255’(1—12';7)‘ [072 + n2)* — 2(vii? + 3i* n2 +)]
[(+(4 = V) 2n% + n6) + 2(2 = V) iii?n2 + n] +

............................... (Eq‘ 25(:)

and for the Danielson and Simmonds e-
quations:

B2 . : ~
Ops = _——MIZRZ(I e (7% +n22(n% +n2 — 1%+ m*.

.............................. (Eq. 25d)

Again, a distinct eigenvalue corresponds to
each pair of the positive integers m and n, the
critical load being for the pair that renders the
lowest eigenvalue.

Table 3.4 gives the predictions of the dif-
ferent isotropic shell theories for I#,=10, in
comparison with the elasticity one. It is clearly
seen that all shell theories predict higher crit-
ical values than the elasticity solution, the per-
centage increase being larger with thicker
shells. However, both the direct Fligge, and
Danielson and Simmonds expressions predict
critical loads much closer to the elasticity
value than the direct Donnell expression.
These were also close to the ones predicted by
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Table 3.3 Comparison with Shell Theories for Isotropic Material, £ =14 GN/m?, v=03, I#,=10
Critical Pressure, p =pr3AEh®) Fixed Ends, n =2,m =1

r Elasticity Donnell’ Timoshenko' Sb%lgggﬁg Flugge' &Dsegnni?rl%glds‘
1.05 0.3729 0.3907 0.3906 0.4721 0.3936 0.3965
: : (4.8%) (4.7%) (26.6%) (5.6%) (6.3%)
110 0.3277 0.3523 0.3523 0.4556 0.3547 0.3580
: : (7.5%) (7.5%) (39.0%) (8.2%) (9.2%)
115 0.3279 0.3617 0.3616 0.4750 0.3644 0.3678
’ : (10.3%) (10.3%) (44.9%) (11.1%8) (12.2%)
1.20 0.3340 0.3779 0.3779 0.4995 0.3811 0.3846
) : (13.1%) (13.1%) (49.6%) (14.1%) (15.1%)
1.95 0.3411 0.3959 0.3959 0.5254 0.3998 0.4033
: : (16.1%) (16.1%) (54.0%) (17.2%) (18.2%)
130 0.3483 0.4145 0.4144 0.5517 0.4191 0.4227
: : (19.0%) (19.0%) (58.4%) (20.3%) (21.4%)
'See Appendix A

‘Equation (25)

the more involved, non-shallow Donnell and
Timoshenko theories. Fligge, and Danielson
and Simmonds equation (25b) is for the case of
‘either axial loading or external pressure (not
both). It may well be that the other modes of
loading bring out the small differences. ,

A comparison of the data from all four
Tables shows that for isotropic materials the
-degree of non-conservatism of the shell theo-
ries is much lower.

It should also be mentioned that the elas-
ticity results of Tables 3.1 and 3.3 for the
Glass/Epoxy material that were produced
through the present formulation, which was
based on assuming general, non-planar e-
quilibrium modes, are very close to the results
from the earlier, simplified formulation of Kar-
domateas[11], which was based on plane e-
quilibrium modes, i.e. a ring assumption.

Finally, to obtain more insight into the dis-
placement field, Figures 3.1, 3.2, 3.3 show the
variation of U(r), V(r), and W(r), which define
the eigenfunctions, for r#, = 1.20, i, = 10, as
derived from the present elasticity solution,
and in comparison with the Donnell shell theo-
ry assumptions of constant U(r), and linear

V() and W(r).

These values have been normalized by as-
signing a unit value for U at the outside boun-
dary r =r, These plots illustrate - graphically
the deviation of U from constant, and the de-
viation of V and W from linearity.

Although the Donnell shell theory eigen-

1.015

Elasticity-GR/Ep

'

1.010 4

/

u(r)

1.005 1
Elasticlty-GUEp
1.000 1
Shell
0.995 T T T
0.80 0.85 0.90 0.95 1.00

rir2

Fig. 3.1. "Eigenfunction” U(r) versus Normalized
Radial Distance r/#,, for the Two Ortho-
tropic Cases (Shell Theory Would Have a
Constant Value Throughout, U(r) = 1 for
All Cases).
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Fig. 8.2. "Eigenfunction” V(r) versus Normalized
Radial Distance r#, from the Elasticity
Solution and the Donnell Shell Theory,
Which Would Show Linear Variation. The
Results Are for the Graphite/Epoxy
Orthotropic Case.

-0.04
Shell

-0.05
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. 007
z /
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-0.11 Y T T
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Fig. 8.8. "Eigenfunction” W(r) versus Normalized
Radial Distance r#, from the Elasticity
Solution and the Donnell Shell Theory
(the Latter Has a Linear Variation). The
Results Are for the Graphite/Epoxy
Orthotropic Case.

function has been plotted for V() and W(r),
the Timoshenko theory lines would nearly coin-

cide with the latter,

Notice that the distribution of U(r) for the
Graphite/epoxy case shows the biggest de-
viation from the constant U -value, shell theo-
ry assumption; the bifurcation load for this
case shows also the biggest deviation from the
shell theory predictions.
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Eigenvalues from Non-Shallow Donnell and Timoshenko Shell Theories .
In the shell theory formulation, the mid-thickness ( » =R ) displacements are in the form:
u;=UjcosnOsinAz, vi=Vysinn@sin Az, wy=Wyc08nOCOS Az, rrermmmcrecresienererssmsmmmssensnan (A1)
where Uy, V,, W, are constants.

The equations for the non-shallow (or non-simplified) Donnell shell theory are (Brush and
Almroth[1]):

RNZ’Z +Nz6,6=0 ............................................................................................................................................ (Az)
M
RNZQ’Z +N9,9+ I:,e +M29,z :0 .................................................................................................................. (Ag)
0 Mo 0 =
N@"RNZ u,, "RMz,z —_ R - 16,29+N8 ﬂ9,6+P(V,6+u)“O ......................................................... (A4)

where RBy=v —u,.

The Timoshenko shell theory (Timoshenko and Gere[4]) has the additional term —N 8 (g +u,)in
the first equation, and the additional term RN v = in the second equation.

We have denoted by R the mean shell radius and by p the absolute value of the external pres-
sure. Notice that for loading under external pressure p, N% = 0 and N g =—pR and if the pressure
from the end caps is included, N = ~pR/2. For the case of a shell with fixed ends, N =0.

In terms of the “equivalent property" constants

E. vysh h2
Con=EhAl —vyvyy); Cay=EshAl — vuvyy), Cyn =‘i—_3v—237 ; Cu=Gyuh, Dy =Cif_1_§ >
23V32

the coefficient terms in the homogeneous equations system that gives the eigenvalues are:

0 =Cpld; 0=(Cu+Cuni; az=—(CuRAZ+ CunR),

C 2 DRA? 22
127} 2“(‘1?22‘ +D227';‘3‘ + 2 ‘*‘20447(“)” )
Con? D,,n2 D A2
Op=— (=2 L C RA2+ ;2: +2 ; )y 3=(Cpu+Cu)ni,
Cyp Dyn* _DyAn? D An?
%lzT =3 +2 +D AR +4 I
C Don?2 Dy A? D A
O G Wt et e W O3 =—Cpl.

R R3 R R
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Notice that in the above formulas we have used the curvature expression k,4=(v, —u_g/R for both

theories. Then the linear homogeneous equations system that gives the eigenvalues for the
Timoshenko shell formulation for the case of end caps, is:

(au"’f‘PR/l)Uo“*'(Oﬁz‘*“PRn/l) V0+a13W0:0, ......................................................................................... (A5)
292
0&1U0+(azz+PR2k )Vo.;.a% W0=()’ ...................................................................................................... (AB)
R2 X
a}l_p__z__._p(nz._l) U0+a32V0+a33W0=0' ................................................................................ (A7)

For the Donnell shell formulation, the additional term in the coefficient of V, in (A6) is ommitted,
ie. the coefficient of V, is only o, and the additional terms in the coefficients of U, and V) in (A5)
are also ommitted, i.e. the coefficient of U, is only oy, and the coefficient of V; is only oy,. For the
simpler case of a cylindrical shell with fixed ends, the terms pR*> 172 are ommitted in the second
and third equations, and the signs of the coefficients of U, are all opposite in all the equations. The
eigenvalues are naturally found by equating to zero the determinant of the coefficients of Uy, V)
and W,.




