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Moisture Induced Boundary-Layer Transient Stresses in
Orthotropic Shells under External Pressure
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ABSTRACT

The high hygroscopic stresses are reported to be confined within a localized region of several
laminar thicknesses from the edge, and in the boundary-layer region they cannot be assessed
accurately with classical lamination theory. The behavior of this highly stressed boundary-layer
region is of great importance in controlling the complex failure modes and performance of the
composite. This study includes (i) providing a benchmark solution for the moisture induced
transient stress and strain fields, and (ii) investigating the stress field produced by the combined
influence of the transient moisture induced stresses and the external pressure in-a thick

composite shell structure.
1. Introduction

Shell structures are broadly used in in-
dustries as load-carrying elements. In par-
ticular, composite shell structures have many
applications in the aerospace industry, in
which weight optimization should be con-
sidered. Although thin shell constructions
have been used in many applications, the use
of moderately thick composite shells is now be-

ing considered in the marine and automobile
industries as well as for components in the

- aerospace industry. Moreover, composites in

the form of circular cylindrical shells are con-
sidered for civil engineering, column-type ap-
plications and in space vehicles as a primary,
load-carrying structure.

The understanding of the stresses induced
by moisture in a composite structure is es-
sential for the design and the comprehensive
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study of its response during service in severe
hygroscopic environments.

Browning, Husman, and Whitney[1] showed
through experiments that temperature and
moisture cause the strength and the mechan-
ical property of a material to be degraded.
They explained that the two sources of the de-
gradation could be the change of the glass
transition temperature and the residual
stresses in the interfaces due to the moisture
absorption. The two sources induce failure
mode change from the fiber dominated failure
to the matrix dominated one. Their ex-
perimental data indicated that the de-
gradation occurs more severely in the direction
transverse to the fibers than in the long-
itudinal one. Whitney and Husman[2] pro-
posed that a flexure test provides a simple
means for determining hygrothermal con-
ditions which induce the degradation of the
strength and the material properties.

Delasi and Whiteside[3] showed ex-
perimentally that the value of the moisture dif-
fusivity increases as temperature or relative
humidity increases, and the glass transition
temperature decreases as the moisture content
increases. For the swelling induced by mois-
ture absorption, Hahn et al.[4,5,6] calculated
the residual stresses resulting from the diff-
erence in the swelling between fibers and ma-
trix through micromechanics analysis. They
suggested that the residual stress may lead to
the creation of microcracks and further de-
grade the strength and mechanical properties
of composites. Crossman, Mauri and Warren[7]
suggested that moisture distribution alters the
viscoelastic response of composites.

Harper[8] used the energy method and clas-
sical lamination theory with Kirchhoffs as-
sumptions for displacement fields to show the
change of curvature in anti-symmetric cross-
ply laminates due to moisture absorption. His
results showed that moisture distribution
plays an important role on the deformed

shapes of the laminates. Pipes, Vinson and
Chou[9] used the classical lamination theory
to analyze the stress field, with the resultant
forces and moments caused by environmental
stresses derived from the Fickian diffusion e-
quation. Kardomateas[10,11] used a dis-
placement approach and a series expansion
technique to solve the transient thermal stress
problem in composite cylinders. He modified
the displacement field in the axisymmetric,
time-independent conditions derived by
Lekhnitskii[12], for time-dependent thermal
stress problems (which are analogous to the
time-dependent moisture induced stress prob-
lems).

Chung{13,14] analyzed a moisture induced
transient stress problem by use of three-di-
mensional elasticity and Kardomateas' mod-
ified displacement field[10]. He showed the
variation of moisture content and stresses
with respect to time and radial distance along
the thickness.

Doxee and Springer[15] analyzed hy-
grothermal stresses and strains in an ax-
isymmetric composite shell according to
Doxee's higher-order shell theory[16]. Farley
and Herakovich{17] suggested that the gra-
dient of moisture concentration is an im-
portant factor in altering stress distributions
and especially, the steep gradient of moisture
concentration observed in the boundary-layer
region. Out of the boundary-layer region, the
stress distribution is shown to be very similar
to the one caused by uniform hygroscopic con-
ditions. Wang and Choi[18] studied the hy-
groscopic stress field in the boundary-layer re-
gion of composite laminates subjected to un-
iformly distributed moisture change. They solv-
ed for the boundary-layer stresses by in-
troducing a proper form of the Lekhnitskii[12]
complex stress functions and using an eigen-
function expansion method and a boundary-col-
location technique. The hygroscopic stress field
in the boundary-layer region is inherently thre-
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e-dimensional in nature and is singular. They
proposed that the boundary-layer hygroscopic
stresses may be primarily responsible for unan-
ticipated failure of composite structures, fre-
quently initiated at the edges.

In this paper, an accurate elasticity solution
will be obtained for the stresses and dis-
placemets in a composite shell loaded by an
external pressure in a hygroscopic en-
vironment. It will be shown that the hy-
groscopic stress are confined for practical time
values to a boundary-layer region near the sur-
faces (since the moisture diffusion process is re-
latively slow). Results will be presented that il-
lustrate the steep gradients of moisture con-
centration in the boundary-layer region and of
the stress distributions along the radial dis-
tance with respect to time and applied pres-
sures.

2. Mathematical Formulation

A problem of transient hygroscopic stresses
in a hollow orthotropic circular cylinder loaded
by external pressure is examined. Consider a
hollow cylinder, in general under external pres-
sure p, as shown in Fig. 2.1. The cylinder has
an inner radius, r; and an outer radius, r,.
The radial, circumferential and axial coor-
dinates are denoted by r, 8 and z, respectively.

It is assumed that the initial concentration
(at t=0) is C,. For ¢t >0, the boundaries r =r,
and r =r, are kept at constant concentrations
C, and C,, respectively. The reference con-
centration is taken as zero.

2-1. Fickian Diffusion Equation

The moisture problem is solved by the Fick-
ian diffusion equation:

D}_i rég_
r

oC(ryt) _ (
or " or

o ),  at 1<, e (1a)
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Fig. 2.1. Thick Cylindrical Shell Under Constant
Boundary Concentrations of Moisture.

where C(r,t) is the moisture concentration and
D is the moisture diffusivity of the composite
in the r direction. The initial and boundary
conditions are

C(rt=0)=C,, at I SIS, oo (1b)
C(r, t)=C; (>0)and C(ry, 1)=C, (t>0) - (10

where C,, C, and C, are constants.

Crank[19] gives the general solution for the
distribution of the concentration of moisture
C(r,t)to Eq. (1) in terms of the Bessel func-
tions of the first and second kind J, and Y, , as
follows:

C{r.ty=bn{r/r)+bn(r,/r) +i [end o(r ) +

n=1

daYor 0 )]eP %™
where

C, <,
bl - ; =
In(r,/ry)
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2-2. Hygroelastic Equations

The hygroscopic stress-strain relations for
the orthotropic body are

O CuCpCys 0 0 0 & — B AC

O [€2CnCyul 0 0 0 | |go-PBAC

Oz CsCpuCsy 0 0 0 & ~ B AC

% | |0 0 0 Cua 0 0 Yo

Tr 0 0 0 0 cy o0 Y

%o 00 0 0 o0 ¢ %o
.......................................... 3)

where ¢; are the elastic constants and f; the
swelling coefficients (1, 2 and 3 represent r,
and z, respectively). The geometry (Fig. 2.1) is
axisymmetric. Since the moisture con-
centration is assumed to depend only on the r
direction, the stresses are independent of 6
and z and the hoop displacement is zero. In ad-
dition to the constitutive equation (3), the e-
quilibrium equations have to be satisfied;
since T,3=1Tz =T, =0, only one equilibrium e-
quation remains:

90, . Or = Ogg _
or r

2-3. Displacement Approach

In this work the displacement field derived
by Lekhnitskii[12] for time-independent prob-
lems and modified by Kardomateas{10] for
time-dependent thermal stress problems
(which are analogous to the time-dependent

moisture-induced stress problems) is used[13,
14]:

ur = U(r t)+z(Wycos — wesing) + 11,cos8 + vysind,
1 g=—2z(wysind + wy cosl) + w.r — usind +vycos,

U, =Zf(t)‘r(WyC036““WxSiD9)+WO, ................. (5)

where the function U(r.t) represents the radial
displacement accompanied by deformation.
The constants u,,vyand w,denote the rigid
body translation along the x,y and z direc-
tions in the Cartesian coordinate system,
respectively, and w: ,w, and w; denote the ri-
gid body rotation in the x,y and z directions
(these may also be functions of time, but since
they do not appear in the strain expressions,
such a dependence would not affect the ex-
pressions that follow in this section).

The parameter f(¢)is obtained from boun-
dary conditions, as discussed later. The strains
are expressed in terms of the displacements as
follows:

_9U(r,t)

& or

Substituting Eqgs. (6) and (3) into the e-
quilibrium Eq. (4) gives the following dif-
ferential equation for U(r,t):

CM[BZU(r,t) L1 BU(r,t)] ~%U(r’t):

or? rooor
‘haca(r’t) +‘12C(:’t) +(023‘C13)“f_£t_) , o (T2)
r
where

Gr=cpB +CpBot i, e (7b)
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gr=(cn—c)B +(cn—c)Bp+(c13-

Now set f(t) in the form

f(t)=f0+2f,, eD%E | s 8
n=1
Moreover, to solve Eq. (7), set
Ulr,t)= Uo(r)+iRn (r)e—Danzz ................ 9
n=l

Substituting Eqgs. (2), (8) and (9) into Eq. (72)
yields the following equations to be satisfied
for Uy, and R, for n=1,2,-++e

Cpy3—C
fnzfng

" C11 .., ¢
cnUO(r)+——r2—U0(r)-—-;2§~U0(r): 7

by—b,
7

In(r/ In(r,/r
+¢q3b, (rrl) +4q2b; (i ),‘“' (10a)

e R (r)+

<, c Cy3~C
11 R,,(r)—- ZZRn(r): 23 13 fn +
r r2 r

[ Jor o) Yo(rom)
Cn qZ 7 r

—4105“71(’041)} +dn [‘h

—qlotnYl(rom)] R=l, w00, e (10b)
For each of the previous equations, the solu-
tion is the sum of a homogeneous solution and a
particular one. The solution of the homogeneous
equation is in the form G,()rh + G,(t)r*k

)\1,2=i‘lczz/611~ ....................................... (10c)

~Ina similar fashion to the parameter f(¢), set
G; (t) in the form: G, ()= o+ 3G, e ,i=1,2.

Since the constants f, and G are yet unk-
nown, we shall indicate the places where they
enter in the expressions that follow (these con-
stants are found later from the boundary con-
ditions). For ¢, #¢, the solution of (10a) for

Ur) =Gt +Gog2+ 2B fr L U3 (),
Cxn

...................................... (11a)
where
b b
Ua(r):~——qi-1—~rln(r/r1)+ 9272 rin(r,/r)+
Ci1—Cx Ci1—Cx
[‘11(C11 Cya) = 2‘12C11] —byr . e (11b)

(cri—cn)f

For ¢y, =c,, the corresponding solution of (10a)

is
G Cp—¢C .
Uor) =G + =2+ =2 fr () + U5 (7).
11
...................................... (12a)
where
b b
HOREC 4221 L) - a2 220y /) +
1
- b, —
( 241 — 32)(bs 7‘)r1n(r/r1). ........... (12h)
4cqq

To solve (10b) we use the series expansions
of the Bessel functions to obtain a series ex-
pansion of the right-hand side, as given in Ap-
pendix A. In the following, ystands for the
Euler's constant ( = 0.577215...).

For ¢y #c,,, the resulting equation (A5) in
Appendix A leads to the solution of (10b) for

R, , n =1, as follows:

Ro(r)=Gpyri+Gyria+ 2B g v 4 RIC),

Ci1—Cxp
...................................... (13a)
EJ zq d
Ri(r)=By,r + ————rin(ra./2) +
. 11— Cp) ( ) 2
B 7ZBIn(r 0/2) + By 173 | oo (13b)
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where
B, = cnqy+ dn (2T g1+ 12) _ 4cy1q,dn
On ™ o
Cii—Cxn 11 =€)
...................................... (130)

The coefficients in the sum over k& are given
in terms of

2dn 1 e 1 —
f,a,—[c,.- p [1+2+ +k+1 yﬂ

Zdnql
b4

[qz + 2q1(k+1)] + B P (13d)

as follows:

24y (-1 02 [g, + 29, (k+1)]

B = RGP [c(k3P —cnl (e
- +1 g2k 42
B [c11(2k+3)* ~ ¢35] =”2(.7.k12);(~w;£%|]_2 kn
B]nk 2C11(2k+3) L errrereeresesreeresrnarirennennes (14b)

In the (unlikely) event that for a certain
k, c11(2k+3)? =¢4, , the term in the sum for this
k is replaced by (Al13) with (A14) and (A15) in
Appendix A.

For c¢;; = ¢4, the solution of (10b) for R, is

ﬂ42

Ri(r)= BD,,rln(ra,,/Z)+ lnz(ra,ﬂ)+z

B rZSIn(r 0./2) +B2,,kr7*+3 ,

where

MCn gy + dn(29; + 212~ q7)

B -
On 27[[511

The series expansion for the Bessel func-
tions cannot be used for large arguments;

hence, the requirement of including an in-
creasing number of terms and therefore large
arguments, necessitates finding a particular
solution for the large arguments" domain.
This is achieved by using the Hankel asymp-
totic expansions of the Bessel functions of the
first and second kind (see (A6) through (Al12)
in Appendix A). Employing the substitution

p=rom; R(P)=Ra(r),

gives the following equation for R;"(p)

Cuanz[Rn””(p)c{» %@] — szcéx"Rn;;gp) =ki
=}
1Y o (k) _
Aol e s sy peosp +

aqy p? sinp) + (cn — dn (g c08p +ay, psinp +

az)kpzcgsp)}, ................................................... (17)
where
2 16k ., _ 16kq,
I Ty T @1y @k-3)
........................................ 18)

and (k) is defined by (A8) in Appendix A.
The solution of the above equation for the
function R:"(p) is found to be

RE0) = 3ty cosp st s +

+pPap ¥ cosp+ s, ¥ sinp.

The coefficients pp,,sf,,pfs,sf, are det-
ermined by considering the terms in the sum
that contribute to the terms p%*-Ycosp, p*Ysinp,
% c0sp , p P sinp in the right hand side of
(17). Define

_ D yik)

L (2k)!82"an«]7_r | eeereresseseesenereerearaananeen (19b)
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We obtain the following recursive formulas
for pfy .Sy »

DPE1C11 = PPy Tea(Zk—32) — cp0) - Spgacn(dk —-2)+

Dkal’k(cn'l'dn) B T ELLIITTIPIPPRI RIS (20a)
P1C11 = P11 [€11(26~32) ~ ¢} + PPy pc11(4k - 2) —
Dkal,k (Cn “dn) JO R ALITIIRIPPRTPISPIIS (20b)
and for pp, , S, ,
PEC1 = Paplen(2k — V2P —cp) = spic114k —
~(Dega+Dia@apn)(Cn —dn), o (20¢)
SPa€11 =8 [en(Zk — V2 - cp) + pfcyydk —
~Dxqy+Dyn@rp)Cn +dn). oo (20d)

The process starts from k =1and the starting
values for k =0 are from (17) and (18) as fol-
lows:

G td) | _aie—d)

N ; = , e (21a)
P enoam T coaT
n"dn)
5> = (-84, +3q,)-C :
P2 =(-8q, ‘h)m
$3, = (~ 8, +3g,) ~n T dn) Lentdn) (21h)
8cyomVm

An important issue regarding this analysis
will be dicussed now. The solution (19) is a
particular solution of equation (17), derived by
considering the Hankel asymptotic expansions
of the Bessel functions for values of the ar-
gument p=ro. 2pr =18.0(see Appendix A),
whereas the solution (13b), which will be de-
noted by R.(r), had been derived based on a
series expansion for the Bessel functions, for
values of the argument p<p,. Since for a
given root o, the argument pranges from r,a,
to r,a. , there may be a transition point from

one solution to the other for R;(r) in the ex-
pression (15a). Both solutions are particular
ones and may be different. Therefore, at that
transition point a homogeneous solution term

should be added to (19) so that

Ri()=hy P+ ho, P2+ RI() 5 RI(r)=R(P),

where h,, and h,, are determined from the con-
dition of equal value and slope at the tran-

sition point

R (pr) =Rs(pw/0n) 5 Ryp (0 )0 = Rys (pr/Cin)

Thus, the expression for U(r,t) satisfying the e-
qulibrium equations is obtained with the unk-
nown coefficients Gyy,G, fo; G, » G2 and fa
for n=1,2--- . These coefficients are determined
from the following boundary conditions:

O-"'(rl:t):‘os G"(rbt):_p ;T,G(ri,t)='t,2(ri,t)=0,
E=1,2. coeremrmmn (23)

where p is the external pressure. Only those
for the stress o, are not identically satisfied.
The stress o, on the boundaries is written in
terms of the displacement field:

() =cyU, (1) + gt (" )

+epfi) -
POl N £ I T e—— (24)

Substituting Egs. (2), (8), (9) into (24) for Uy(r)

gives the following two linear equations for

GGy and fy:

(e +edri G+ (Cudy+ e Gy +Agfo =

( ;)
~cyUp () ~cy Yo +qy[byin(ry/r) + b,
In(ro/r)]+p; i =1,2 ,(25a)
where
CitCyp

Ag= {en—cp)+ens for ¢y #cop

€131~ Cxp
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..................................... (25h) )
qs | (r3 =rf)
- =(c3— oo+ > |21 (b, — b))+ (r2b; -
=—'—“CZ32C G fen+len+epn(rad]+ceppforey =cp €13~ czllo 2 { 2 (G2=ba)+ (s
1
andp; =0, ati=1;p=-pati=2. rib)ln (rz/rl)} ~Leg-rtyren Y 1y
=12
In a SiInﬂaI‘ fashj.()n, by Substituting the ex- U6 (ri) B ILICTTIS TP (283)
pressions for R.(r), there correspond two
linear equations for G, ,G,, , fa, for n =1, -co, and forn =1,-e0,
as follows,
+
(w) (3t —rf* )Gy, +AGy, + A fa =
(cul + G, Henh + crd Gy, + A fa= A+l
. 2 () (crs—c)n "‘0132(‘1Y+1’iR;(ri)+(‘11/C(ﬂ)("‘1)i
==—cyRa(r;) —cp v +qfend ofr;on) + i=12
B T R T Vv S — (25¢0) [enri Jo(r; 0 ) + dar, Y11 0 )], covversvoeesseee (28b)
Now, let us consider the conditions of resul- where I, and I, are given by (A16) through (A
tant forces and moments. Since the stresses do 25) in Appendix A. The coefficients A,, A, are
not depend on z, these conditions exist in any defined as:
cross section. It can be proved (e.g. Lehknitskii
[12], although hygroscopic effects are not in- Ciahy+Cp
4 A, = (— }‘2+1 s AZ+1 fO &= 5
cluded) that the conditions of zero resultant 1=( A+1 )2 rizt?) for ey # e
forces along the x and y axes of a Cartesian =(Ca3 = Cy3) In(ry/ry) for ¢qq =Cyy
coordinate system are satisfied identically. (29a)
The conditions of zero resultant moment along - ) )
x and y axes (and that of zero twisting mo- A= 3 ;rl) Cas+ €5 ~Cis for ¢y #Cypys
ment) are also satisfied by the symmetry of ‘u~Cz
the problem. Therefore, it remains only the (3= . _ - ch—ck
condition of resultant axial force, P, , arising T g, [4c3e 1y~ (c25C13)'] dc,

in a hydrostatic field:

f 2crzz(r,t) 2nrdr =P;(t)=~pna(r} —r?).

1

This gives the last set of equations that are ne-
eded to determine the comstants G, f;. In
terms of

gs=cpi3fr +eufotepnf,

Equation (26) gives

Ciady + €3

”—m—xr%ﬁl ~rf1* )G +A Gy +Asfo =

(

r2 I0(r, /7)) fOT Ciy=Cop, eeeeresemmemesennnans
Therefore the constants f;,G; and hence the
displacement U can be found by solving (25)
and (28). After obtaining the displacement
field, the stresses can be found by substituting
in (6) and (3). The specific results are present-
ed in the next section.

3. Discussion of Resulis

First, a significant observation is that due to
the slow rate of moisture diffusion process,
many terms, i.e. roots o, of the characteristic e-
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quation (2e), are needed, which makes the
Hankel asymptotic regime very important. In
the results presented in this section, fifteen
terms were used.

As an illustrative example, a T300/5208 Gr/
Ep circular cylinder of inner radius r, =
20mm and radii ratio r,/r; = 1.50 was con-
sidered. The fibers are oriented along the cir-
curmnferential direction. The typical values of
moduli in GN/m? and Poisson's ratios are:

E,=99,E,=140,E,=9.1,
Gy =43,G=47,G5 =509,
Vip = 0.020, vy, =0.30, vy, =0.49,

where 1 is the radial(), 2 is the cir-
cumferential(6) and 3 is the axial(z) direction.

The typical values of hygroscopic expansion coef-
ficients (e.g, Hahn[4]) are: f§ = 3. = 6.67x10"%v1%,
By=0. For this material, the moisture diffusivity
in the radial direction is D = 2.145x 10" mPsec.
This value was obtained by substituting a tem-
perature of 50C to the equation for the tem-
perature-dependent moisture diffusivity in Hahn
[4]. To illustrate the results, the nondimensional
radial distance r=( -r)/(r,-r;), and nor-
malized time 7 =Dtfr,—r,)* are used. The initial
concentration (at t =0) is taken Cy = 0.1, whereas
the concentrations at the ends for t > Qare: C, = 0.
5and C, = 15.

Fig. 3.1 shows the spatial distribution of the
concentration. Two time values, f = 0.002
(corresponding to about 10 days) and f =0.01
(corresponding to about 50 days) are used.

The major stresses are the hoop, oy and the
axial one o , and these are shown in Figs. 3.2,
3.3. The boundary-layer effect is more clearly
shown in the axial stress. Notice that these
plots illustrate the cases with no mechanical
load present, ie. these siresses are induced
purely from the hygroscopic effects. Although
a normalization of the stresses would be gen-
erally desirable in presenting the results, it is

Moisture Concentration, C (% wt)

Radial Distance, £

Fig. 3.1. Radial Distribution of the Concentration
C(r,t) at Different Times.
The Nondimensional Time is Defined by
t~=Dz‘/(r2 -r ).
The Nondimensional Radial Distance is De-
finedby r=(¢~r)/(r,-r).

30, MPn

Radial Distance, ¥

Fig. 3.2. Distribution of the Hoop Stress o, (NO
Mechanical Loading).

my opinion that for this particular hy-
groelastic problem, absolute values give a
more clear description of the resulting effects.

It should also be mentioned that longer time
scales are used because the equlibrium process
of moisture absorption or desorption takes
much longer than that of temperature.
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1207 -
asoh p = 20 MPs, t = 0.01
~160
-180 - - - g
8.0 0.2 G.4 0.6 0.8 1.0 1.2
Radial Distance, 7
.5%‘0 0j2 c.4 0.6 0.8 1.0
Fig. 8.4. Distribution of the Hoop Stress oy, -
Radial Distance, 7 lustrating the Coupling of  Mechanical
Loading (External Pressure) and Hy-
ic E ts.
Fig. 3.3. Distribution of the Axial Stress o (No groscopic Effects
Mechanical Loading).
10 r
p = 20 MPa, t = 0.01
]
The coupling of mechanical loading and hy- e \;\;\’\-@__’,/ﬁ,\
groscopic effects is illustrated in Figs. 3.4, 3.5, § wr /
which show the hoop stress, oy, and the axial : wf
one, Oz , for (a) applied external pressure only ® L} P =20 MPa, nohygroscopic efiects
and (b) applied external pressure with con- i
sideration of the hygroscopic effects at time f = wl
0.01. The stress distribution for hydrostatic ' . . ) :
i 6.2 6.4 0.6 6.5 1.0

pressure only is taken from Lekhnitskii[12]. It
is seen that the hygroscopic effects result in
an increase in the absolute value of the hoop
stress at both the inner and outer boundaries.

Again the hygroscopic boundary-layer is
more clearly seen in the axial stress oz,
which shows a large increase near the outer
surface. In this example, a value of the ext-
ernal pressure p =20MPa was taken. Other
values of the hydrostatic pressure would affect
mainly the mean value and not the existence
of the boundary layer stress.

More specifically, Fig. 3.6 shows the effect of
coupled applied pressure p, and hygroscopic
fields, on the axial stress, for p = 0 (only hy-
groscopic effects), p = 5 and p = 20 MPa at
time 7 = 0.002.

Radial Distance, ¥

Fig. 8.5. Distribution of the Axial Stress o., lI-
lustrating the Coupling of Mechanical
Loading (External Pressure) and Hy-
groscopic Effects.

Notice also that for the example considered,
the reinforcement is along the periphery, thus
the axial direction is a direction of weakness.
Therefore, the boundary-layer effect on the ax-
ial stress may have more important im-
plications for failure initiation than a similar
one on the hoop component. Applications of
thick composite shells in marine environments
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p =0, %= 0.002 (hygroscopic effects only)

/

i

p=5MPa, { = 0.002

Oor, MPa

/

P =20 MPa, f = 0.002

3 L
0.4 0.8

Radial Distance, 7

Fig. 8.6. Distribution of the Hoop Stress o=, II-
jJustrating the Effect of Variable Mechan-
ical Loading (External Pressure), Coupled
with the Hygroscopic Effects.

may actually involve a larger size than the
one considered in these examples.

For an insight into these size effects, the
results for the transient stress profiles were
derived for a shell made out of the same ma-
terial with the same fiber orientation, and of
inner radius r; = 4m and radii ratio ry/r; = 1.
25. A time value of 50 days with no mechan-
ical loading and the same initial and boundary
moisture concentrations were used.

It turns out that the same boundary-layer ef-
fect on the axial stress oz appears (as in the
present, smaller size example, Fig. 3.3, 7 = 0.
01), with a similar range of negative values;
however, the boundary layer was confined to a
smaller r range near the outer surface. A
much smaller effect exists for the hoop stress
Og, with smaller positive and less negative
values than in the small size example, Fig. 3.2.

Equations (B4) through (B10) in Appendix B
represent the resultant stresses and moments
induced by moisture absorption for an ortho-
tropic body. Since they are integrated with
respect to the radial distance, it is noteworthy

to observe that the classical shell theory can-
not capture the boundary-layer stresses charac-
teristic of which the dependence of the radial
coordinate is for this problem.
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APPENDIX A

Bessel Funciions And Supplementary Equations

The Bessel functions are classified as for small arguments and for large arguments. The full ex-
pressions for the supplementary equations cited in Section 2 are given.

A-1. Bessel Functions

The Bessel functions of first and second kind of order zero and one have a seriesexpansion of the
form (see e.g. Wylie[20])

_w LY (1fx
]O(x)_E 22"(:!)2 s Jy() = 2 Y it ’)Zk+1)' TS (A1)
Yox)= ,._(1n_ + W ox) - ...z (2%1)(’:‘!)2 W) , wrvevesmesssense s (A2)
2% _21 15 DR, S S
Yix)= ;(ln—z— + ) 1(x) g 2 2 A A D)] [ y(k+1)—- ] } . (A3)

In the above expressions y= 0.577215... is the Euler's constant and y(k) is defined as

\[)(k)=l+%+"'+l- ............................................................................................................................. (A4)

The above series expansions can be used to calculate the Bessel's functions up to a value of the
argument of about x = 18. They are rapidly convergent especially for small values of the argument.
Using the series expansion, we obtain the following equation in place of (10b):

c11(Rn ry+ Ry (r)) ZZRn( )= ( —613)f" " Can"?‘(?/ﬁ)ﬁql'l-}qz)dn .
2dnq2 In(row2) a,,/l) 2, & (- 1y+1%u+z lg:+2g,(k+1)] . o _(:w .
R B ) RGP I T

where f,, is defined in (13d).
For large arguments we can use the Hankel asymptotic expansions for the Bessel functions (see e.
g. Abramowitz and Stegun[21]) to obtain the following expressions

Jox) = A o(x)sinx + By(x)cosx ; J(x) =B, (x)sinx ..Al(x)cgsx e (AB)
V() =Bg(x)sinx — A g(x )eosx ; Yi(x)=—A [ (x)simr — B (X)COSK . «rovimvmrmmmmmmmimsiiin i (AT

The functions Ay(x), A(x), By(x), By(x)are given in terms of
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Vi(k) = 123252 (4k =102, k=1,00;  Y(O)=T, «revrrvrsrmmsmmmmmmiisnssisinns s esas e sses s s (A8)
as follows
N ) Ak e
() ) =3 e o 1= ) (49)

& Dy (k)(k+1) 16kx

(TDC)W‘A 1) =k§0 (2k)!(8x)2k(4k_1) {1- =y T, corerrereer (A10)
S VNE | e S
(m)Bu0) =3, e 1+ G | (A1D)
(7DC)WB l(x) — i (_1)k+1 WI(k)(4k+1) [1+ 16kx ] L ererereesreereriereeriiieseert s e tartrateareraaaarrrrnirns (A12)

= (K)(Bx ) (4k~1) (4k~3)(4k+1)

In this way, the above series of the Hankel asymptotic expansion can be used to calculate the
Bessel functions for values of the argument x > 18. The series converges rapidly and the number of
terms required in the summation over k is at most 13 at x = 18.0, being smaller for larger values

of the argument.

A-2. Supplementary Equations

In the event that for a certain k, ¢,;(2k+3)? = ¢, , the term in the sum in (13b) and (15b) for this k
is

B r#t3 an(,- 04/2) + B, r%+3 In(r Oln/2) | veereremer s b b (A13)
where now

e e G )
Bt (k)] dyy(2k+3) (Al

D)o For — 2nlga 2 KDL e (A15)

B = g D20 ok 13) 22k +3)

For ¢y # ¢4, , the expression for I, in (28a), is:

- qxbyr —bort)

(9192 gy
’ 2c1—c3)

In(r,/ry)+
¥ 4cy1—c3) (e~ €l

(TN (2 Tt ) N—— (A16)

and the expressions for I, , n =1,-+o0, in (28b), for the small arguments domain, are
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der]z "QZ
I, = ~1)¢ B gy " S L. ,-2111 S O/2) + Sy weeeeeeee e Al17
g'z( ) { o ey — sz)} U mcyy — sz)r ¢ )+ ¢ )
S § z ~1¥B m 0w/2) + (=1Y[Bopy — Biy | 12 (A18)
= ._1k=0( ¥B,, ——— In(r; 0/2) + (-1) [ J o L s

For ¢;; =y, , the expression for I, is

8Iocyy =qy(bir} +byr) In¥(ry/r) +(q2—q )b - b)ri —-r#)+
+[(2g1 = qo)b1 = b)r? +qubar? —byr ) I(ryhy), oo (A19)

and the expressions for I,, n=1,"-c, again in the small arguments domain, are

dng dn‘Iz By, dnqy 17
= i 2 2 _ v 2 1n i +1 — o .
I = ;2( 1) —2r? In? (1 0 2) + ( 1)( ) (rs0w2) + (1) (- e )5 +S
................................................................................................ (A20)
For large arguments, with p, =r; 0. ,
Gl = 3 ) Tk + g Hes P+ 6 = i) a0 s =
A ki ¥ parp o P T Bk T 2k+m S k12 ‘
BB BdaG oo s
TR pi sinp; , (A21)
where I, ;(p) and I, ,(p) are defined by the recursive formulas
2k =1/2) 2k ~ 32, =—(2k —32) p- 22 cosp+ PR HI2SIND = 51, oevereeesessmmmmesnss s (A22)
2k = 1V2)(2%k —32) 1,5 =~ 2k = Y2)p 2 sinp — P2 Qosp = [ g . woovereereessossersssssmsss s (A23)
The process starts from k=0, and initially,
Lo @):jpwmspdp; Lo (p)zjgvzsmpdp_ ....................................................................................... (A24)

Notice that the integral of the homogeneous solution (22a) (due to continuity requirements at the
transition point of the two partial solutions) should be added to I, , ie., forcy; # ¢y, the following

term should be added:

;L+1 A+1
hZ

> - 1Y (hy P

o
fury A+l AL+1

For c,; = ¢4, , the term multiplying 4, in the previous relation (A25) is Inp; .
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-~ APPENDIXB

Shell Theory Including Hygroscopic Stresses

Equilibrium equations for a nonshallow circular cylinder can be derived by using the principle of
the stationary value of total potential energy (see also Brush and Almroth{22]).

RNz,z +NzG,G:O: .......................................................................................................................................... (Bl)
RNZG’Z +N9,8—N6®9”'N26(p2 +%M9,9+M29,2 -p (v —u’e):()’ ............................................................ B2)

1
RM, . +2M, g0, + R Mogo—=Ng— [V @) o+ (V;6P:) o+ RN, D), + RN D:),]-p (R +u +vg=0,

where R@y=(v —ugand @ =-yu,. The resultant forces and moments including hygroscopic

stresses are differed by two terms. The one is induced from the total strains and the other from hy-
groscopic field.

Ny SN = NJJ | eooeseossns s B4)
M;j:M:,'—MS, D] B0, 2 oeerserii bbbttt B5)

where Nf]- and M,-'j are due to the total strains, and N;; and M;; due to the strains induced by mois-
ture absorption. For an orthotropic body in the axisymmetric case like our problem,

N =J;r12(511-612)/-\c (F) 8,2, 1) dr , woeeveemeemmsesisnssccis s (B6)

N;’:J'rzquC (Fs 6,2, E) dr | —wevereeereeee sttt ®B7)
L

N’;zzM’;zo, ............................................................................................................................................. B8)

My -_-J':(ql_qz)Ac (7, 8,2, £) (F —R)dr , wreeersermesoescsinns e B9)

Mz’“z'frzq3AC (Fs 8,2, 1) (F —R)dr , oeeeesemeesinsisnne s aasis et ess s (B10)
r1

where C(r, 6,z,t) is the concentration of moisture and g, ¢,, g; and R are the same as defined pre-
viously.



