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The Influence of Transverse Shear Stress on Damping of 0-degree
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ABSTRACT

A model for predicting damping in composites has been developed based on the concept of
strain energy-weighted dissipation. In this model, the effect of transverse shear stress on
damping has been included in addition to the effects of inplane extension/compression and

‘inplane shear. Validation of the model was attempted by conducting damping measurements on

00 unidirectional composite beams with varying length and thickness. The results of theoretical
predictions of damping in laminated composites were found to compare favorably with
experimental data. The transverse shear appears to have a significant effect on the damping
mechanisms in 0° unidirectional polymer composites.

I . INTRODUCTION

tiple sources such as the inherent material

Damping is an important factor in the
design of the structure with controlled vi-
bration and movement. In many structural ap-
plications, damping provides sufficient energy
dissipation to suppress resonant amplitudes of
vibration. In general, damping arises from mul-

damping [1], aerodynamic damping, and struc-
tural damping. In structures, additional
sources of damping are provided through en-
ergy dissipation mechanisms such as bolted,
riveted and bonded joints [1]. From a design
perspective, material damping can be viewed
as the reliable lower bound on energy dis-
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sipation. The degree of structural damping is
sensitive to fabrication and assembly details
that may vary.

Several researchers have developed the
transverse shear models on damping in lam-
inated composites. Bicos and Springer[2] ex-
plored a dynamic response of shell structure
by using the damped element model through a
finite element method(FEM). Alam and As-
nani[3] employed the cocept of the cor-
respondence principle of linear viscoelasticity
and the solution in a series form for damping
analysis of rectangular plate. Extention, bend-
ing, in-plane shear and transverse shear de-
formation were included in their damping
model. Saravanos et. al.[4] investigated the in-
tegrated damping mechanics for composite
plates with constrained interlaminar layers of
polymer damping materials. Their works in-
volve high-order or discrete layer theories and
address more complex structural members.
Hwang and Gibson[5] developed a 3-D FEM to
take into account the contribution of the in-
terlaminar stresses. The interlamimar damp-
ing was found to be particularly impotant over
a particular range of ply orientation. Koo and
Lee[6] studied the damping of composite lam-
inates using FEM on the basis of the shear de-
formable plate theory. But they did not pro-
vide the experimental data.

In this paper, we developed a straight-
forward and simple model taking account of
the transverse shear stress to predict the
damping of laminated composites based on A-
dams and Ni's theory.

Material damping can be defined as any pro-
cess that transforms the energy of a mechan-
ical vibration into some other form of ir-
recoverable energy. From an energy viewpoint,
material damping is defined as the ratio of the
change in stored energy (dissipated energy),
AW, to the maximum stored energy, W, dur-
ing a cycle as shown in Fig(l). Throughout
this paper, material damping is represented in
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Fig. 1. Energy dissipation during a loading cycle.

terms of the damping loss factor, n:
1= A W/(21W)

In composites, damping is normally at-
tributed to one or more of the following
mechanisms [1,7}: (1) Viscoelastic response of
the constituents; (2) Thermoelastic damping
due to cyclic heat flow; (3) Friction at the fiber/
matrix interface; (4) Damage initiation and
growth.

Material damping represents the cumulative
contributions of the viscoelastic response of
the constituents, cyclic heat flow and the fric-
tion at the fiber/matrix interface. Materials
with internal interfaces, as exemplified by the
interfaces of the laminae of conventional com-
posite materials, can dissipate mechanical en-
ergy through the movement of the interface by
mechanisms such as a discontinuity of stress
across the interface or by frictional losses. Und-
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er vibration, a considerable amount of heat is
generated in composite materials, which is in-
dicative of high energy losses in the material.
Nondestructive evaluation techniques such as
IR Thermography [12] have recently de-
monstrated this energy loss. The heat gen-
erated due to material imperfections is caused
by friction at defects, such as cracks in fibers
and the matrix, and at delaminations.

Although it is not possible to isolate the in-
dividual mechanisms for a specific material,
from the viewpoint of mechanics, a damping
prediction model can be analytically developed
by considering inplane stresses as well as the
transverse shear stress. By adding transverse
shear deformation, we can quantify the sen-
sitivity of damping loss factor with respect to
the variation in thickness and length of lam-
inated beams. The numerical results based on
such a model have been validated with ex-
perimental data.

II. THEORETICAL BACKGROUND

Laminated beam formulae have been de-
veloped to account for the stacking sequence of
individual plies based upon Tsai's [13] and A-
dams and Ni's [14] works. The formulation is
built on the coordinate system as shown in Fig.
(2). In this research, a prineipal flexural mo-
ment, M1, is applied to the laminated beam.
Due to this flexural moment, physically
transverse shear stresses in the beam exist.
Therefore, the equations of motion must ac-
count for the interlaminar stresses. These out-
of-plane stresses in the beam can easily be det-
ermined by assuming that these stresses are
independent of the y-axis because the strip of
beam is oriented along the x-axis. Thus, the
energy dissipated can be separated into 4 dif-
ferent sources, being associated with the long-
itudinal (ox), transverse (oy), in-plane shear
{(oxv), and transverse shear (oxz) stresses,
respectively, in fiber coordinates. The e-

v

x : fiber direction

y : normal to the fiber direction
z : normal to x-y plane

1,2 : loading direction

Fig. 2. Fiber and loading coordinate systems for
theoretical model.

quilibrium equations for the t-th layer of the
laminate are described as follows:

9of) | 9o | dof _

= 5 = = 3 T 1
oo 9o oo o
= + 5 + 5 - 0 )
dof) . dofp  dof) S S
= > et F; =0 3

Hence, in the energy approach both flexural
strain energy and transverse shear strain en-
ergy are taken into account. To analyze the
transverse shear deformation effect on damp-
ing, the flexural bending moment must be as-
sumed to fit experimental conditions. Two load-
ing conditions were considered in the present
effort to determine the suitable flexural bend-
ing moment. One is point loading with M1=Px
while the other is distributed mass loading
with M1=1/2 wx®. Finally, the energy dis-
sipation for any 0° laminate can be predicted
by using the energy method and the beam
theory.

2-1. FLEXURAL BENDING MOMENT
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According to Adams and Ni's [14], the strain
energy dissipation which is subjected to bend-
ing in the beam can be divided into three
parts related to inplane stresses such as sx, sy
and sxy in the fiber coordinate.

Simply,
AW:AWX+AWy+Any ..................... (4)

The strain energy dissipation about ox is writ-
ten as

i h2 { h2
A"Vx:J- 2_[ 7Ty, Ox & dzdx =2m)L” Ox Ecdzdx

27”7
s j m2Qdi; +Qpd1, +Q16d1s)

(mZd;1 +mnd}g)z%dz j Y57 P —— (5)
0
where,

1 = length of beam, h = thickness of beam,

L = axial basic damping loss factor, d'j = nor-
malized flexural compliance, M1 = Px =
bending moment under point loading or,
M1 = 1/2 wx® = bending moment under
distributed loading.

Similarly, A Wy and A Wxy can be evaluated as
follows ;

271771- 2 2 * » *
AW, =T‘2—‘[> n¥(Q1dy; +Qudiz +Qi6d1s)
!
(nd, —mndzé)zzdzJ‘Mde ..................... ')
m)
AWy = LT j mn(Q1di; + @l +Q16dis)

(zmndn —(m2—n?d3)%dz [syb o' Midx

where, 7t = transverse basic damping loss fac-
tor, nur = in-plane shear basic damping loss
factor, I* =the normalizing factor which equals
h¥/12.

And the bending strain energy of the beam is

i
di ¢
szjoMlkldx:I_ilJ'Mlzdx ...................... 8

2-2. TRANSVERSE SHEAR STRESS

From the equilibrium equations (1)-(3) of the
laminate, the transverse shear stress can be
obtained. In order to apply the equilibrium e-
quation, we first substituted the following in-
plane stresses into the equilibrium equation.

0';’)” m2Q Q) di; +Qf9d7, +0f{d%)
fo(')M1
= !* ........................................................ )
G}‘l)‘ “nHQE) dyy +Q0d;, + 08 dig)
=2 giMl ...................................................... 10)
I
o= mn)(Q 9 dy, +Q8dy, + Q1) dis)
:M ...................................................... an
I
where,
FO =m¥Q) di, +Q{d], +Qfddig) e 12)
£ =n2QR) diy + QM + Qi) v as)

9 =Emn)QF diy +Qf9d1; +Qfdie) oo (14)

For laminated composite beams, the in-
terlaminar shear stress, 0x;, is determined
from the equilibrium equation (1) by assuming
the axis of the beam to run along x-axis. The
stresses can be assumed to be independent of
the y-axis because the strip of beam is orient-
ed along the xaxis. Under these assumptions,
we can obtain the interlaminar shear stress
(0xz). However, this model is valid only for ¢
unidirectional composites for two reasons. The
first reason is that the loading direction coin-
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cides with fiber direction only in unidirectional
composites. The second reason is that we
could not explicitly quantify interlaminar
shear modulus with variations of each fiber an-
gle, except for transversly isotropic wuni-
directional composites. Therefore, we can take
the transverse shear deformation effect into ac-
count only in the case of 0° unidirectional com-
posites. By applying the above equations we
have:

From the beam theory, the o term was ob-
tained as follows:

where, Q = P = bending force in the point load-
ing, or, Q@ = wx = bending force in the dis-
tributed loading.

The integral Eq.(16) assures continuity of
the transverse shear stresses at layer in-
terfaces. The shear strain energy of the beam
is written as

1 h

/2
I e

Gy
A -Vp)G, +V;Gn ’
modulus of lamina and Gf = shear modulus of
fiber, Gm = shear modulus of matrix, Vf = fi-
bervolume fraction.
The dissipated energy that is related to in-
terlaminar stress, 0x, is written as

where, G: =Gn Gc = shear

k2
s 2
AWy = bdzdx oo 18
G 18
where, 7, =g——~Vé—)—nm—G—c— = transverse basic

shear damping loss factor [11] in the case of ¢°
unidirectional composites, and ns=nLt, Nm = ma-
trix damping loss factor, Gm = matrix shear
modulus, Ge = composite shear modulus.

2-3. TOTAL STORED ENERGY IN
THE CANTILEVER BEAM

The total stored energy in the beam is des-
cribed as

W=W,+W,
Ly

Ia

g 1 {7,
'[)Mldx + ET'[)L/ZGXZb dodi e (19)

where, Wb = bending strain energy in the can-
tilever beam and W; = transverse shear strain
energy in the cantilever beam.

From results of the above energy method,
the total damping loss factor is predicted as:

_ L AW _ AW + AW, + AWy + AWe
W W, + W

where, pov. = 2mov. = specific damping capacity
and nev= overall damping loss factor.

2-4. DETERMINATION OF BASIC
DAMPING LOSS FACTORS

In order to calculate the dissipated energy
in composites, it is essential to accurately
evaluate the basic damping loss factors. In gen-
eral, it is known that an increase in the
amount of damage in the material, the stress
amplitude of the test, or the test frequency
tends to enhance the damping loss factor.

The theoretical models that are currently a-
vailable to predict the damping loss factor for
composites are inadequate for design purposes.
A theoretical model [15] assumes that
adhesives are flexible and the bonding
between the fiber and the resin is perfect.
However, practically, it is very difficult to fa-
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bricate specimens that satisfy these as-
sumptions. Also, damping can be caused by in-
terface mechanisms such as shearing motion
between the fiber and the matrix. In addition,
although fiber damping is usually assumed to
be negligible, it is necessary to exactly be elu-
cidated in the future works. Futher, as the
structural dimensions increase, the number of
defects in the material increase as well. Ac-
cordingly, the basic damping loss factors were
statistically determined by experimental
works using numerous unidirectional 0°, 45,
90° (fiber direction) specimens.

. EXPERIMENTAL

In this study, the impulse technique was
used for measuring the material damping. Ma-
jor components of the apparatus include the
test specimen, a clamping block, an elec-
tromagnetic hammer, and a noncontact eddy
current probe. The test specimen is a flat lam-
inate that is supported as a cantilever beam in
the clamping block. All test specimens had a
width of one inch and a thickness of either 8(0.
042 inch), 20(0.1 inch) or 32(0.162 inch) plies.
The specimen length was chosen to provide
the desired frequency to facillitate the meas-
urement of the loss factor. The elec-
tromagnetic hammer was used to provide a
reproducible impulse. The noncontact eddy cur-
rent probe is a motion transducer located at
the tip of the specimen. The signals from the
force and motion transducer are input into a
Fast Fourier Transform (FFT) analyzer. As a
method of data processing for loss factors the
half-power bandwidth method of frequency
resolution in zoom mode was applied to the fre-
quency response function curve to evaluate the
loss factor. A schematic drawing of the ex-
perimental setup is presented in Fig.(3). A de-
tailed description of this experimental method
can be found in ref.[7, 8].
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Fig. 3. Instrumentation for impulse Technique.

IV. RESULTS AND DISCUSSION

The variations of the damping loss factor
with respect to thickness and length are
shown in Fig.(4)-(7). Experimental data for a
20ply(t=0.1 inch, w=1 inch) AS4/3501-6 com-
posite are plotted in Fig.(5) along with the
theoretical curve. Although the predicted
damping data are lower than the experimental
data, there is a reasonable agreement between
them. In the cantilever beam apparatus, there
might still be some damping in the grips even
though the grips were tight [16]. In this study
there exists more extraneous loss In the
measured damping of a short beam because of
a grip effect. For the 0° AS4/3501-6 composites,
the damping loss factor increases with de-
creasing beam length.

Damping of the thicker beam is more sig-
nificantly influenced than that of the thinner
beam. The influence of specimen thickness on
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Fig. 4. Theoretically and experimentally det-
ermined vibration damping loss factor
versus specimen length/thickness for 0 de-
gree 8 ply AS4-3501-86 composites.
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Fig. 6. Theoretically and experimentally det-
ermined vibration damping loss factor
versus specimen length/thickness for 0 de—
gree 20 ply AS4/35016 composites.

the damping loss factor of AS4/3501-6 com-
posites was examined by using 8 (0.042 inch),
20 (0.1 inch) and 32 ply (0.162 inch) lam-
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Fig. 6. Theoretically and experimentally det-
ermined vibration damping loss factor
versus specimen length/thickness for 0 de-
gree 32 ply AS4/35016 composites.
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Fig. 7. Theoretically determined vibration damping
loss factor versus specimen thickness for 0
degree AS4/35016 composites on 13 inch
specimen length.

inates. In this study, even though the loss fac-
tor shows a gradual increase with increasing
thickness of the specimen analytically, there
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Fig. 8. Damping loss factor and frequency versus

specimen length/thickeness for 0 degree 20
ply AS4/3501-6 composites.

Table 1. Basic Material Properties of AS4/3501-6
Ccomposites Used in This Study

Gir Uy T U
(GPa) | (x107) | (x10) | (x109)
1.8405 | 8.5801 | 9.477

E | B |,
(GPa) | (GPa) | V¥
128 | 9.26 0.3 59

is no clear distinction in the loss factors
among them (8ply, 20ply and 32ply) due to
excessive experimental data scattering. The
damping loss factor appears to increase with
increasing thickness of the specimen owing
to the effect of transverse shear (Fig.(7)). Fig.
(8) shows the loss factors and frequencies
versus specimen length/thickness in mode 1
shape . The determination of an optimized
length and thickness for a structure of which
the structural damping is at a maximum is
very important for designing a structure with
good dynamic performance. As a result of two
loading cases for the suitable flexural mo-
ment, the damping values obtained by the
distributed mass loading were closer to ex-
perimental damping data than those by the
point loading.

Table 2. AB4/3501-6 (020 Graphite/Epoxy Damp-
ing Data

V. CONCLUSIONS

A general mathematical model has been de-
veloped for predicting the damping of lam-
inated composite beams based upon the work
of Adams and Ni[14]. This model is more com-
prehensive than that of Adams and Ni and
results in a significant improvement in the
prediction of damping on short and thick 0°
unidirectional composite beams even though
the experimental results departed from the
theoretical predictions as the beam became
short. Reasonable agreement was found
between theoretical values and experimental
data. Material damping increases with in-
creasing thickness and decreasing length of
the specimen due to transverse shear stress
(013). Thicker specimens are more sensitive
than thinner ones to material damping.
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