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Multi-Objective Design Optimization of Composite Stiffened Panel 
Using Response Surface Methodology

Mohanraj Murugesan*, Beom-Soo Kang*, Kyunghoon Lee**†

ABSTRACT: This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar
shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and
stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design
problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both
maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is
employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six
fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened
panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load.
In addition, the effects of different material properties are investigated and compared. The obtained results reveal that
the composite stiffened panel with Kevlar material is the most effective design.
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1. INTRODUCTION

Stiffened composite panel (SCP) applications in the field of
aerospace have significantly increased in the last decade [1]. In
SCP design, the buckling phenomenon, which ends up in a
large-scale transverse deflection under compressive load, is the
primary criterion [1]. For efficient laminate design, factors
such as a fiber orientation, a thickness, and the number of lay-
ers need to be meticulously examined. Researchers have
adopted several approaches to solve the above mentioned con-
siderations. A laminate design problem can be characterized as
a non-linear, multi-model, and multi-dimensional problem,
and design parameters include both discrete and continuous
variables [2,3]. This research is committed to the optimal
design of an SCP that is predominantly used in aircraft parts,
such as a fuselage and wing panels. 

The buckling stability of an SCP requires one to take into
account of compression, shear, and combined compression-
shear loads. Under these load cases, stiffened composite panels
usually experience local skin buckling, stiffener buckling, and
global buckling. The failure of an SCP often starts at the inter-

face between a skin and stiffeners because of stress concen-
tration induced by different skin and stiffener deformation
after local skin buckling [4,5]. This failure mode generally hap-
pens as a result of delamination, and it arises due to the pres-
ence of inter-laminar shear stress in the laminates and
limitation on adhesive bonding strength [6,7]. 

To enhance the buckling load of an SCP, we draw on the use
of a cover skin. A cover skin enlarges the contact area between
a skin and stiffeners, which leads to bending stiffness increase
given compressive load. This design strategy is based on
knowledge about how the failure of an SCP initiates at the
interface between a skin and stiffeners after local skin buck-
ling. In this study, we deal with only pre-buckling phenom-
enon owing to the snag of a buckling phenomenon in
composite structures. For an SCP, we consider those made up
of straight shaped, T-shaped, and L-shaped stiffeners.

 Stiffened panel design problem typically requires expensive
computational efforts. To overcome this difficulty, we exploit
design optimization based on surrogate modeling. A surrogate
model can replace an expensive simulation model during the
preliminary design and optimization process [8]. In the lit-
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erature, Luca et al. [9,10] inspected their problem with arti-
ficial neural networks aiming at the weight minimization of an
SCP. Rikards et al. [11,12] examined their problem with
response surface methodology (RSM) to derive the prelimi-
nary design guidelines of an SCP under post-buckling con-
straints. On the other hand, both experimental and numerical
results were used for the construction of a surrogate model.
Akula [13] investigated the influence of fiber and matrix prop-
erties on the structural response of a composite panel. There-
after, a radial basis function model is constructed for reliability
analysis. We tackle our problem with RSM to design an SCP
that is able to work under compressive load.

In this research, a response surface model is built with sim-
ulation data based on a computer experiment, and the fitness
of the constructed models is verified. Polynomial models
obtained by RSM are used as objective functions for our
design problem. A multi-objective optimization problem is
formulated for the maximum buckling load by minimizing
both maximum out-of-plane shear stress and panel weight in
MATLAB. The SCP design variables are one ply thickness, six
fiber orientations of skin, and four stiffener heights. For the
identification of the best design among optimal designs, the
technique for order preferences by similarity to ideal solution
(TOPSIS) is adopted. Overall, this paper seeks for the best SCP
design with different materials in consideration of buckling
load, interlaminar shear stress, and panel weight.

2. STIFFENED PANEL DESIGN FORMULA-
TION

2.1 Model Description
A finite element model of an SCP is built in ANSYS as

shown in Fig. 1. In order to address an SCP design problem,
we utilized a computer experiment for surrogate model con-
struction. We consider a stiffened panel of size 356 × 356 mm2,
which is bent to form a cylindrical surface with a radius of

381 mm [14]. We chose this panel configuration because this
shape had been employed by previous researchers [11,12].
This panel is supported by four stiffeners located symmetri-
cally with a distance of 89 mm between two stiffeners. The
panel skin edges A and C are loaded by uniform compressive
load Fx = 20,000 N, and it is restrained in displacement
UY = UZ = 0 and in rotation about RX = RY = RZ = 0. Two lon-
gitudinal edges B and D are restrained in displacement and in
rotation like edges A and C. For an initial configuration, the
skin has a stacking sequence of [0/45/90]S. For the entire case,
the stiffener has a fixed stacking sequence of [45/-45/90/0/0/
90/-45/45]S. In this research, three stiffener shapes are counted
for numerical investigation as illustrated in Fig. 2: a flat sec-
tion, a T section, and an L section. A cover skin is made up of
the same material as a skin, and two layers are placed in [-45/
45] orientations. The material ply thickness is 0.125 mm, and
epoxy is used for resin/matrix. The properties of the three
materials are listed in Table 1.

2.2 Numerical Model
The critical buckling behavior of an SCP is modeled in

ANSYS as a linear eigenvalue problem. Composites are typ-
ically thin walled structures, thus we modeled the panel with a
linear shell element. In this paper, the cover skin approach
assumed that the cover skin is perfectly bonded to the skin andFig. 1. Finite element model of an SCP 

Table 1. Material properties of composite panel

Symbol
Material

Units
Carbon E-glass Kevlar

E11 164 38 195 GPa
E22 =E33 12.8 8.27 14.6 GPa
G12=G13 4.5 4.14 7.5 GPa

G23 2.5 4 5 GPa
υ12=υ13 0.32 0.25 0.3 None

υ23 0.45 0.27 0.45 None
X1t 2724 1050 3100 MPa
X1c 111 690 500 MPa
X2t 50 55 150 MPa
X2c 1690 140 1800 MPa

X3t =X3c 290 275 600 MPa
S12 120 70 250 MPa
S13 137 80 320 MPa
S23 90 60 200 MPa

ρ 1800 1900 1400 Kg/m3

Fig. 2. Stiffened panel with multiple stiffener shapes
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stiffeners as shown in Fig. 3, Fig. 4, and Fig. 5. A multi-point
constraint is employed for both skin/stiffener and web/flange
assemblies such that they are perfectly bonded with no sep-
aration.

2.2.1 Linear Elasticity Analysis
In this present study, four-noded element with six degrees of

freedom at each node termed as SHELL181 is chosen. The
computation for the four-noded shell element is governed by
first order shear deformation theory (FSDT). The theory has
the capability of evaluating from thin shell to substantially
thick shell structures. The theory can also deal with the non-
linear analysis of thin plates [15] and interlaminar shear stress
at the layer interfaces. To obtain the interlaminar shear stress,
we can use output definitions (ILSXZ, ILSYZ); here, ILSXZ
and ILSYZ denote the interlaminar shear stress components in
xz and yz plane. 

The kinematic assumptions of FSDT are as follows: 

(1)

where u, v and w represents the displacements. The in-plane
displacements are u0, v0, whereas the transverse displacement
of the mid-plane is w0. The rotations of normal to mid plane
about y and x axes are θx and θy, respectively, and θz is the
higher order terms in Taylor’s series expansion.

The displacement δ can be expressed in terms of shape
functions Ni as

(2)

where , φ represents the rota-
tion compoenents in each node for all the three axis.

Four noded shell elements represented in natural coordi-
nates (ξ−η) is given as 

(3)

where N1 to N4 are the shape functions. Strains are obtained by
derivation of displacements as

(4)

where . Here a comma fol-
lowed by a subscript denotes partial differentiation. The nor-
mal strain components of in plane direction are u,x, v,y and w,z.
The shear strain components of out of plane direction are u,y,
v,x , v,z, w,y, w,x, and u,z. The strain vector can be expressed in
terms of a nodal displacement vector such that

(5)

where [B] is the strain displacement matrix containing inter-
polation functions and their derivatives, and {δ} is the nodal
displacement vector. The generalized stress-strain relationship
with respect to its reference plane can be expressed as

(6)

where {σ} and {ε} are the stress and strain vector, respectively,
and [D] is the rigidity matrix. Using the virtual work method,
element stiffness matrix [K0] can be derived as
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Fig. 4. L-shape stiffened panel with cover skin

Fig. 5. T-shape stiffened panel with cover skin

Fig. 6. Forces acting on the stiffened panel 

Fig. 3. Flat shape stiffened panel with cover skin
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(7)

where |J| is the determinant of the Jacobian matrix.
The deflections can be resolve for static analysis as follows: 

(8)

where {P} is the static load column vector.

2.2.2 Linear Buckling Analysis
Linear buckling analysis predicts the buckling strength of

linear elastic structure. It is assumed that structure configu-
ration has no change in the process of loading. The buckling
load is taken as the load when the determinant of stiffness
matrix becomes zeros. Eigenvectors corresponding to an
unstable state are calculated [16].

The buckling problem is formulated as an eigenvalue
problem:

(9)

where K0, KG and λCr represents the initial stiffness matrix, the
stress stiffness matrix, and the buckling load factor, respectively. 

The Critical buckling load PCr can be obtained through the
equation: 

(10)

where P is the design service load.

2.2.3 Stiffened Panel Weight Calculation
The weight of the SCP is calculated directly from ANSYS

that produces the weight to area ratio n for ply material based
on given ply thickness as given below: 

(11)

where . Symbol ρ denotes the density of ply material
and t denotes the thickness of ply. Subsequently, the covered
ply area is calculated after the composite modeling process.
Then, the weight to area raito is used for the calculation of the
panel weight as shown below:

(12)

where A is the covered ply area of the stiffened panel.

2.3 Design Optimization Formulation
The present investigation is concerned with the multi objec-

tive optimization of a composite stiffened panel. An optimi-
zation problem is formulated for maximum critical buckling
load (PCr) by minimizing both maximum out-of-plane shear
stresses (τxz, τyz), and the panel weight (w) over choosing
appropriate design variables.

The multi-objective optimization problem can be expressed
as follows:

Minimize: 

subjected to , 

where x is the vector of design variables, n is number of vari-
ables, and LB and UB stand for lower bound and upper bound
of input parameters.

3. SURROGATE MODELING

3.1 Response Surface Method 
Response surface methodology (RSM) is a statistical tech-

nique used in the development of a functional relationship
between a response of interest, y, and a number of associated
control (or input) variables denoted by x1, x2,…, xn. A response
surface model can be written in the form such that [17]: 

(13)

where ε is called the error term, disturbance term, or noise.
This variable captures other factors that affect the response y
other than the control variables xi.

In RSM, the form of a relationship between the response
and the independent variable is unknown. Thus the first step
in RSM is to find a suitable approximation for the true func-
tional relationship between approximating function and true
response function. Usually a second order model is utilized in
RSM to approximate the function as follows [17,18]: 

 (14)

In equation (14), β0 is called the intercept, whereas βi, βii,
and βij are the regression coefficients of quadratic model, and k
is the total number of samples. 

 The observation response vector y at n data point of func-
tion y can be written in matrix notation as follows [18]: 

 (15)

In equation (15), X is a matrix of the control variables and β
is a vector of the regression coefficients. 

The least squares method, which is minimizing the sum of
the squares of random errors, is used for the estimation of
unknown vector β. Therefore, the estimated vector β can be
written as [18]: 

(16)

3.2 Sampling Plan
 The design of experiments is an efficient procedure that

aims to gather as much information as possible with as little
effort as possible. The design of experiments is conducive for
the determination of an input/output relationship with sur-
rogate modeling methods. An important issue in surrogate
modeling is how to achieve reliable surrogates with a rea-
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sonable number of samples. For an experimental design with
RSM, a central composite design (CCD) with face centering
was employed. According to the chosen sampling scheme, a
total of 151 computer experiments is required for the 11 fac-
tors in Table 2; one sample at the center of an 11-dimensional
hypercube, 22 samples at –α/+α coordinates along each axis of
the hypercube, and 128 samples by a 2(11-4) fractional factorial
design. In addition to the 151 sample generation, extra 151
samples are randomly generated for the verification of fitted
response surface models. 

3.3 Numerical and Graphical Verification 
We are required to verify whether the predictions of the fit-

ted surrogates are good or not. There are various metrics for
the evaluation of surrogate model accuracy. In this study, the
model adequacies were checked by the coefficient of deter-
mination R2, an adjusted-R2, and a root mean square error
(RMSE).

3.3.1 R-squared 
It measures how much variability in an observed response

can be accounted for by a fitted surrogate model. It typically
ranges from 0 to 1. A good surrogate model will have a large
R2 that lies in-between 0.95 to 1.

(17)

3.3.2 Adjusted-R2 
It is a modified version of R-squared that has been

adjusted for the number of control/input variables in the
model. It is necessary for checking the adjusted R2 because it
adjusts the statistic based on the number of independent

variables in the model.

Adjusted - R2 = (18)

3.3.3 Root Mean Square Error (RMSE) 
It is the square root of a mean squared error. It is a measure

of the differences between observed data and predicted data by
a surrogate. The smaller value implies how closer the fit is with
respect to the observation. 

(19)

3.4 Verification Results 
Numerical metrics for verification are evaluated with the

CCD samples and summarized in Table 4, Table 5, and Table
6. High values of R2 indicate that the fitted regression models
well align with the observed data. In Table 4 to Table 6, we can
see that adjusted-R2 values are almost the same as R2 values,
but they are slightly less, which typically occurs as the number
of input variables increases. In the tables, RMSE shows the
overall closeness of the fitted regression models to the
observed data. In sum, the fitted quadratic models are quite
accurate compared to the observed data. Apart from the
numerical verification, graphical verification is performed
with the random samples as shown in Fig. 7 to Fig. 18. The fig-
ures illustrate predicted data by surrogates against the actual
data by ANSYS simulation. For the random samples, R-
squared values range from 0.95 to 1.0, which conveys that the
fitted surrogates are quite good at predicting responses at
unseen inputs. After confirmation runs with the random sam-
ples, we are good to use the fitted regression models as objec-
tive functions to address a multi-objective problem for SCP
design.

 
3.5 Optimization Procedure 

The regression models obtained with RSM are used as
objective functions. The genetic algorithm (GA) is employed
in this work for multi-objective optimization. The GA is one of
the most prominent methods that have been extensively used
for SCP design optimization. Although the GA is a popula-
tion-based approach and generally is able to prevent the search
procedure from being trapped in local optima. We used a
population size of 200 with the maximum generation of 2,200.
A Pareto fraction and a distance function is used for the
control of the elitists of the genetic algorithm. We set the
Pareto fraction to 0.5, which is 50% of the population size.
After multi-objective optimization with the GA, the best
alternative, nearest to the positive ideal solution among Pareto
optimal samples, has been identified with TOPSIS.
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Table 2. Design spaces of design variables in optimization

Process variables Input 
parameter

Lower 
bound

Upper 
bound

Stiffener height 1 X1 22 25
Stiffener height 2 X2 22 25
Stiffener height 3 X3 22 25
Stiffener height 4 X4 22 25
Ply thickness X5 0.125 0.135
Ply angle 1 X6 -45 0
Ply angle 2 X7 0 45
Ply angle 3 X8 60 90
Ply angle 4 X9 60 90
Ply angle 5 X10 0 45
Ply angle 6 X11 -45 0
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4. RESULTS AND DISCUSSION 

Numerical investigation of an SCP was conducted for the
three stiffener shapes and for the three different material prop-
erties. After optimization with surrogates, extra numerical
investigation was performed with ANSYS simulation for the
validation of the optimization results with surrogates. The
optimization results in Table 7 to Table 10 show that the values
predicted by regression models and those predicted by the
original ANSYS simulation are slightly different. In Table 7 to
Table 10, the maximum errors do not exceed 2.586%, which
assures that optimization with surrogates are credible.

In Table 7, optimization results are presented for the critical
buckling load objective with carbon fiber material. The results
show that the critical buckling load for the panel with flat
shape stiffeners is 48.208 KN; on the other hand, those with
the angle shape and T-shape stiffeners are 65.176 KN and
72.808 KN, respectively. Among the three stiffeners, the T-shape
stiffener is found to carry the ultimate buckling load when all
the panels are made of the same material. The panel with T-
shape stiffener provides the maximum critical buckling load
because this panel possesses high bending stiffness that offers
resistance to bending deformation. As the bending stiffness
depends on an elastic modulus and the area moment of inertia,
it is clear that the panel with T-shape stiffeners shows the larg-
est buckling load capability compared to other stiffener types.

An SCP is often subjected to compressive loads that gen-
erate resultant shear forces in the axial and bending directions.
Shear forces in the bending direction cause a transverse shear-
stress distribution through the panel cross section. In Table 8
and Table 9, optimization results are presented for interlam-
inar shear stresses that are generally affected by fiber angles
and material properties. As can be observed, the τXZ com-
ponent is higher than the τYZ component, which is due to the
fact that resultant shear force in the x-direction is higher than
that in the y-direction. As indicated in Table 1, the maximum
induced shear stress in the panel is significantly lower than the
maximum allowable shear stress in both xz and yz compo-
nents. Thus, the failure of this panel does not happen under
this loading condition.

Similarly, Table 10 shows that the panel with T-shape stiff-
eners carries the maximum weight of 0.4847 kg due to the
large covered ply area. To evaluate the material properties con-
tribution to SCP design, we take E-glass and Kevlar materials
into consideration. In Table 7, results show that the SCP with
Kevlar material holds maximum buckling load as a result of
efficient directional properties. The buckling load of the panel
with flat shape stiffeners is 22.37% and 74.36% higher than
those with carbon fiber and E-glass materials, respectively. In
addition, the buckling load of the panel with L-shape stiffeners
is 18.71% and 73.37% higher than those with carbon fiber and
E-glass materials, respectively. Likewise, the buckling load of
the panel with T-shape stiffeners is 15.38% and 74.55% higher

than those with carbon fiber and E-glass materials, respec-
tively.

In Table 8 and Table 9, the induced shear stresses in the
panel are lower than the maximum allowable shear stresses in
both shear components; thus, the panels are safe from buck-
ling failure. In Table 10, the SCP with Kevlar material carries
the minimum weight as the density of Kevlar is lower than
those of the other two materials. It is also important to note
that the panel with L-shape stiffeners weighs more than that of
T-shape stiffener when E-glass material is used. This is because
optimization results with different stiffener types vary in terms
of stiffener heights and ply thickness as shown in Table 12.

Overall, the SPC with Kevlar material offered the most
effective design. We demonstrated that optimal SCP design is
achievable based on the judicious selection of the 11 design
variables and the three material properties. We also demon-
strated that the use of computationally cheap surrogates ben-
efits the SCP design process by avoiding the use of
computationally expensive finite element analysis.

For this research, we used a PC that runs on 64-bit Window
7, Intel(R) Core(TM) i3-4130 CPU @ 3.40GHz processor, and
8 GB installed memory (RAM). For a single ANSYS simulation,
it took about 15 minutes on average. The polynomial regres-
sion models required 151 CCD cases for surrogate model con-
struction and 151 random cases for surrogate model checking.
In total the surrogate model approach needs 302 ANSYS sim-
ulations, which took about 75.5 hours on average. If we were
not to adopt surrogates, the total computational cost would be
enormous. For instance, the multi-objective optimization with
the GA calls a simulation 440,201 times with the population
size of 200 and 2,200 generation. Without surrogate models, it
would take about 110,050.25 hours; thus saving on compu-
tational cost is obvious. The overall computational cost with
and without surrogates are compared in Table 3.

5. CONCLUSIONS

The finite element analysis of SCPs subjected to axial com-
pression was performed. Data sets obtained through ANSYS
simulation have been employed for the construction of
response surface models. Thereafter, the surrogate models
were utilized for SCP design posed as multi-objective optimi-
zation. Thanks to surrogate models, the SCP design process was
able to save huge computational cost. Overall, optimal SCP
designs showed superior performance on the buckling load,
the interlaminar shear stress, and the weight. Among the three
materials, Kevlar material offered the most efficient SCP design.

Table 3. Computational time

With surrogate Without surrogate

CPU time
302 experiments 440201 fun calls

75.5 hours 110050.25 hours
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 It is well known that stiffened panels are often designed for
operations under a buckling load. However, stiffened panels
can sustain much more load beyond the buckling load and
often fail due to delamination. Based on this research, we rec-
ommend inspecting a panel to examine what problems the
panel experiences until failure when it is subject to under com-
pressive; this examination may shed light on how one can
improve the panel. We believe that an efficient SPC can be
devised by the design optimization process presented in this
paper and be manufactured by current technology without
any difficulties. In future, we would like to follow up the pres-
ent research work to take into account of real world effect,
such as imperfection in bonding between skin and stiffener, on
evaluating delamination.
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NOMENCLATURE

δ = displacement column vector
λ = critical load multiplier
υ12 = Poisson’s ratio in plane 12
υ13 = Poisson’s ratio in plane 13
υ23 = Poisson’s ratio in plane 23
E11 = Young’s modulus at x direction
E22 = Young’s modulus at y direction

G12 = shear modulus in plane 12
G13 = shear modulus in plane 13
G23 = shear modulus in plane 23
S12 = ultimate shear strength in plane 12
S13 = ultimate shear strength in plane 13
S23 = ultimate shear strength in plane 23
X1c = ultimate compressive strength in direction-1
X1t = ultimate tensile strength in direction-1
X2c = ultimate compressive strength in direction-2
X2t = ultimate tensile strength in direction-2
X3c = ultimate transverse compressive strength
X3t = ultimate transverse tensile strength
yi = actual/observed data from experiment
k = number of variables
n = number of samples

APPENDIX SECTION A.

Table 4. Numerical verification of fitted surrogates with CCD samples for Carbon fiber material

Model Response R squared Adjusted R2 RMSE Max error % Min error %

Flap shape

λ 0.9980 0.9960 0.0159 1.8688 -1.6427
τxz 0.9969 0.9937 0.3330 4.8334 -3.8348
τyz 0.9966 0.9931 1.3141 3.9879 -5.7789
w 1.0000 1.0000 1.21e-08 9.631e-14 -2.215e-13

Angle shape

λ 0.9943 0.9882 0.0324 3.1479 -2.9793
τxz 0.9928 0.9851 0.5182 4.7310 -3.9799
τyz 0.9977 0.9952 1.0846 2.2869 -4.3888
w 1.0000 1.0000 4.157e-10 8.642e-14 -2.454e-13

T-shape

λ 0.9981 0.9960 0.0210 1.8511 -1.2591
τxz 0.9965 0.9929 0.3485 3.4423 -3.6927
τyz 0.9981 0.9960 0.6775 2.1626 -3.3190
w 1.0000 1.0000 1.71e-08 1.1192e-14 -3.4243e-13

Table 5. Numerical verification of fitted surrogates with CCD samples for E-glass fiber material

Model Response R squared Adjusted R2 RMSE Max error % Min error %

Flap shape

λ 0.9998 0.9995 0.0014 0.4633 -0.4672
τxz 0.9974 0.9946 0.1329 2.7611 -1.7606
τyz 0.9994 0.9988 0.2279 0.8716 -0.7921
w 1.0000 1.0000 1.3422e-09 1.0582e-13 -2.623e-13

Angle shape

λ 0.9982 0.9962 0.0053 1.5169 -1.3887
τxz 0.9986 0.9970 0.1007 1.6912 -1.4774
τyz 0.9997 0.9994 0.1335 0.5490 -0.5230
w 1.0000 1.0000 2.61e-08 1.1127e-13 -2.656e-13

T-shape

λ 0.9998 0.9996 0.0018 0.4219 -0.3791
τxz 0.9993 0.9986 0.0646 1.0292 -0.9011
τyz 0.9997 0.9994 0.1085 0.5542 -0.5209
w 1.0000 1.0000 1.71e-08 2.364e-14 -3.542e-13
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Table 6. Numerical verification of fitted surrogates with CCD samples for Kevlar fiber material

Model Response R squared Adjusted R2 RMSE Max error % Min error %

Flap shape

λ 0.9984 0.9966 0.0172 1.5460 -1.2614

τxz 0.9975 0.9949 0.2803 4.4644 -3.5333

τyz 0.9974 0.9947 1.0444 3.0734 -4.0748

w 1.0000 1.0000 1.378e-09 5.036e-14 -2.848e-13

Angle shape

λ 0.9938 0.9872 0.0412 3.1888 -2.8822

τxz 0.9946 0.9890 0.4185 4.2990 -3.6129

τyz 0.9983 0.9965 0.7701 1.7840 -3.0182

w 1.0000 1.0000 1.256e-09 1.099e-13 –3.004e-13

T-shape

λ 0.9984 0.9966 0.0236 1.6225 -1.1623

τxz 0.9973 0.9938 0.2984 2.9931 -3.0585

τyz 0.9985 0.9968 0.5319 1.6668 -2.3436

w 1.0000 1.0000 1.56e-08 1.661e-13 -1.578e-13

Table 7. Optimized results for the critical buckling load objective

Model Materials
Critical buckling load [KN] Absolute error

%Regression Model Full Model

Flat shape

Carbon fiber 47.718 48.208 1.050

E-glass 15.740 15.924 1.150

Kevlar 60.958 62.098 1.833

Angle shape

Carbon fiber 65.176 66.378 1.809

E-glass 21.346 21.740 1.848

Kevlar 81.058 81.654 0.727

T-shape

Carbon fiber 72.326 72.808 0.662

E-glass 21.426 21.900 2.161

Kevlar 83.870 86.042 2.520

Table 8. Optimized results for the shear stress XZ objective  

Model Materials
Shear stress XZ [MPa]

Absolute error %
Regression Model Full Model

Flat shape

Carbon fiber 55.1413 56.1980 1.880

E-glass 47.4107 47.4170 0.013

Kevlar 55.9763 56.3340 0.635

Angle shape

Carbon fiber 76.0091 76.0110 2.5e-3

E-glass 53.5418 54.1370 1.099

Kevlar 66.9495 68.727 2.586

T-shape

Carbon fiber 51.3858 52.6780 2.452

E-glass 43.7173 43.2200 1.137

Kevlar 50.7146 51.9160 2.314
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Table 9. Optimized results for the shear stress YZ objective  

Model Materials
Shear stress YZ [MPa]

Absolute error %
Regression Model Full Model

Flat shape

Carbon fiber 18.4120 18.7610 1.860

E-glass 13.1378 13.3330 1.463

Kevlar 17.1266 17.3310 1.178

Angle shape

Carbon fiber 21.5847 21.8020 0.996

E-glass 15.8542 15.7880 0.417

Kevlar 22.3435 22.6490 1.348

T-shape

Carbon fiber 19.6286 19.9280 1.5025

E-glass 15.8174 15.7040 0.717

Kevlar 20.8505 21.1140 1.248

 Table 10. Optimized results for the weight objective  

Model Materials
Weight [Kg]

Absolute error % Absolute error %
Regression Model Full Model

Flat shape

Carbon fiber 0.4039 0.4021 0.400

E-glass 0.4323 0.4322 0.023

Kevlar 0.3165 0.3161 0.108

Angle shape

Carbon fiber 0.4777 0.4767 0.219

E-glass 0.5004 0.5014 0.198

Kevlar 0.3720 0.3714 0.156

T-shape

Carbon fiber 0.4842 0.4847 0.099

E-glass 0.4946 0.4958 0.241

Kevlar 0.3734 0.3736 0.050

Table 11. Optimization results of the three stiffener models [Carbon fiber material]

Processed variables Flat shape Angle shape T-shape

Stiffener height 1 23 mm 22.5 mm 24 mm

Stiffener height 2 22 mm 22.5 mm 22 mm

Stiffener height 3 22.5 mm 22.5 mm 22.5 mm

Stiffener height 4 22 mm 22.5 mm 22 mm

Ply thickness 0.132 mm 0.133 mm 0.135 mm

Ply angle 1 -2o -8o -3o

Ply angle 2 10o 7o 0o

Ply angle 3 74o 80o 84o

Ply angle 4 82o 76o 82o

Ply angle 5 15o 31o 13o

Ply angle 6 -37o -42o -45o
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Table 12. Optimization results of the three stiffener models [E-glass fiber material]

Processed variables Flat shape Angle shape T-shape

Stiffener height 1 22.5 mm 22.5 mm 22 mm

Stiffener height 2 22 mm 22 mm 22 mm

Stiffener height 3 22 mm 22.5 mm 22 mm

Stiffener height 4 22 mm 22 mm 22 mm

Ply thickness 0.135 mm 0.133 mm 0.132 mm

Ply angle 1 -3o -9o -3o

Ply angle 2 5o 11o 11o

Ply angle 3 75o 74o 69o

Ply angle 4 64o 73o 67o

Ply angle 5 17o 38o 18o

Ply angle 6 -35o -40o -44o

Table 13. Optimization results of the three stiffener models [Kevlar fiber material]

Processed variables Flat shape Angle shape T-shape

Stiffener height 1 22.5 mm 23 mm 23 mm

Stiffener height 2 22 mm 22.5 mm 22 mm

Stiffener height 3 22 mm 22.5 mm 23 mm

Stiffener height 4 22 mm 22.5 mm 22 mm

Ply thickness 0.134 mm 0.133 mm 0.134 mm

Ply angle 1 -2o -2o -3o

Ply angle 2 6o 12o 6o

Ply angle 3 78o 80o 78o

Ply angle 4 69o 77o 74o

Ply angle 5 11o 27o 31o

Ply angle 6 -42o -33o -36o

Fig. 7. Graphical verification of fitted surrogates with random samples for flat shape stiffener/carbon fiber material 
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Fig. 8. Graphical verification of fitted surrogates with random samples for angle shape stiffener/carbon fiber material

Fig. 9. Graphical verification of fitted surrogates with random samples for T-shape stiffener/carbon fiber material

Fig. 10. Graphical verification of fitted surrogates with random samples for flat shape stiffener/E-glass fiber material

Fig. 11. Graphical verification of fitted surrogates with random samples for angle shape stiffener/E-glass fiber material
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Fig. 12. Graphical verification of fitted surrogates with random samples for T-shape stiffener/E-glass fiber material

Fig. 13. Graphical verification of fitted surrogates with random samples for flat shape stiffener/Kevlar fiber material

Fig. 14. Graphical verification of fitted surrogates with random samples for angle shape stiffener/Kevlar fiber material

Fig. 15. Graphical verification of fitted surrogates with random samples for T-shape stiffener/Kevlar fiber material
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Fig. 16 . Graphical verification of fitted surrogates with random samples for weight objective/carbon fiber material

Fig. 17. Graphical verification of fitted surrogates with random samples for weight objective/E-glass fiber material

Fig. 18. Graphical verification of fitted surrogates with random samples for weight objective/Kevlar fiber material


