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General Paper

Cumulative Damage Theory in Fatigue of Graphite/Epoxy [±45]s 
Composites 

Deuk Man An†

ABSTRACT: The phenomenological evolution laws of damage can be defined either based on residual life or residual
strength. The failure of a specimen can be defined immediately after or before fracture. The former is called in this
paper by “failure defined by approach I” and the latter “failure defined by approach II.” Usually at failure there is a
discontinuity of loading variables and, because of this, damage at failure is discontinuous. Therefore the values of
damage at failure by two different approaches are not the same. Based on this idea the sequence effects of the
phenomenological evolution law of damage given by dD/dN = g(D)f(Φ) were studied. Thin-walled graphite/epoxy
tubes consisting of four of [±45]s laminates were used for the experimental study of sequence effects and the effects of
mean stress on fatigue life. It was found that the sequence effects in two step uniaxial fatigue for [±45]s graphite/epoxy
tubular specimen showed that a high-low block loading sequence was less damaging than a low-high one.

Key Words: Cumulative damage, Graphite/epoxy composite, Residual life, Residual strength, Fatigue damage, Phenom-
enological laws

1. INTRODUCTION AND HISTORICAL 
REVIEW

 When a structural part is subjected to static and/or time
varying loading, the prediction of remaining life is an import-
ant area of mechanical design. This problem is known in the
literature as the cumulative damage problem [1]. The progress
of damage in a structural part can be thought of in many dif-
ferent ways. For a microscopic view, we can take the initiation
and growth of voids and micro cracks or the increase of the
dislocation density as indicators of the evolution of the damage
process [2]. From a macroscopic view point, growth of macro
cracks or changes of specimen geometries can be candidates
for the identification of the damage.

Also, damage can be expressed as changes in mechanical
properties of a material, i.e. Young’s modulus, shear modulus,
Poisson’s ratio, yield strength, ultimate tensile strength, etc.. 

In the case of isotropic damage, Lemaitre [3] selected for the
measurement of damage, D, the increase of effective Cauchy
stress tensor in a given loading condition:

(1.1) 

where σij with and without a prime denote the Cauchy stress
tensor in the damaged state and undamaged state, respectively.
In equation (1.1), the undamaged state is D = 0, and D = 1 cor-
responds to the failure of the element.

If we denote ultimate tensile strength at the virgin state and
at the damaged state as , respectively, then damage
can be defined as

(1.2)

If the loading condition is fatigue, we might assume that
during each cycle a certain amount of life of the specimen is
expended and so damage can be linked to the consumption of
life. Based on this idea, Palmgren [4] and later Miner [5] deter-
mined the remaining life under variable amplitude loading.
Those studies usually called the Palmgren-Miner cumulative
damage theory, or Miner’s rule. A failure in a multistage load-
ing or block loading (a sequence of loading segments with
constant amplitude) is defined by

σij
′ σij
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(1.3)

where m is the number of loading segments and ni the number
of applied cycles at stress amplitude σi (segment i) and Ni
denotes the fatigue life related to σi. By (1.3) the number of
cycles at the final stage, nm, is

(1.4)

But equation (1.3) has drawback. The order in which the
various stress levels are applied does not have any influence
upon fatigue. For many cases in metal fatigue a high-low block
loading sequence is more damaging than a low-high one[1,6].
In laminated composites the trends appear to be opposite to
those in metals [7]. To reproduce the observed sequence
effects in fatigue, Hashin and Rotem [8], and Hashin [9] intro-
duced the damage curves which are defined by the remaining
number of cycles-to-failure at a given equivalent cyclic load-
ing. For a two-stage loading there is opposite behavior in
sequence effects in their theory whether damage curves pass
thorough the static ultimate strength or through the endur-
ance limit. Fig. 1 shows two different sets of damage lines.
Before Hashin and Rotem [8], Hashin [9], Subramanyan [10]
considered the sequence effects using equivalent damage
curves which all pass through the knee point of the S-N curve.
It corresponds to the endurance limit in Hashin and Rotem
[8], and Hashin [9].

In composite materials, Broutam and Sahu [11] gave a mod-
ified Miner’s rule based on their experimental results. Their
definition of damage is given by equation (1.2). 

In terms of statistics, Bogdanoff attacked the problem of
cumulative damage using the Markoff process [12]. Hashin
[13] provided a statistical cumulative damage theory of fatigue
based on his deterministic cumulative damage theory [9] by
making the assumption of normal distribution of experimen-
tal data. Yang and Jones [14] and Chou [15] assumed a two-
parameter Weibull distribution of ultimate tensile strength for
the prediction of fatigue life. Bengtsson and Rychik [16] and
Rychlik and Gupta [17] studied fatigue damage by Gaussian
loads.

All the proposed phenomenological theories of cumulative
damage can be classified in two groups depending on the defi-
nition used. In the first group the damage is related to the
changes in mechanical properties of a material. In the second
group damage is measured by the remaining life under a cer-
tain reference loading. The former will be called the definition
of damage by residual strength; the latter will be called the
definition of damage by residual life.

The concept of discontinuity of damage at the failure will be
introduced. A concept similar to this one was used by Bui et al.
[18]. 

2. THE CONCEPT OF THE DISCONTINU-
ITY OF DAMAGE AT FAILURE

To introduce the idea of the discontinuity of damage at fail-
ure, a constant stress creep test with applied stress level σCP is
taken as an example. As shown in Fig. 2, during this creep

ni
Ni
-----

i 1=
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∑ 1=

nm Nm 1
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Ni
-----
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∑–
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=

Fig. 1. (a) Damage lines through static ultimate strength, (b)
Damage lines through endurance limit 

Fig. 2. A schematic diagram of decrease of residual strength
under constant creep loading (σCP) 
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loading, residual strength RS is supposed to decrease from one
to the residual strength RS(σCP) which is the value corre-
sponding to the stress level σCP. Immediately after the spec-
imen is broken, no external load can be sustained by this
specimen and therefore the corresponding residual strength is
zero. By considering residual strength immediately before and
after the failure, we can conceive a discontinuity of residual
strength at the failure time tf. Adopting usual designations in
describing discontinuity of real functions, we can express the
residual strength immediately before and after time tt as fol-
lows:

(2.1a)

(2.1b) 

where superscripts “−” and “+” denotes the values of the resid-
ual strength as the failure time tf is approached from the left
and right, respectively. Fig. 2 shows the discontinuity of resid-
ual strength at tf. We can introduce damage, D, by one-to-one
mapping with the residual strength, RS. For this one-to-one
mapping we have a damage discontinuity at tf.

For another example of damage discontinuity, let us con-
sider a single-edge notched specimen with constant stress
amplitude zero-to-σ fatigue loading. Fig. 3 shows a schematic.
Here we can define the damage, D1 in the form

(2.2)

where a is the current crack length and 2b the width of the

specimen. From the above definition we have a one-to-one
relationship between crack length a and the damage D1 and in
particular we have

 

(2.3)

The laws of linear elastic fracture mechanics indicate that
the specimen has the critical crack length a for a given nom-
inal stress σ. If the crack length exceeds a, there occurs cat-
astrophic failure of the specimen so we can express a
discontinuity of damage at failure.

(2.4a)

(2.4b) 

where D1f denotes the damage at the failure.
In general loading conditions there always exist abrupt

changes (discontinuities) of forcing variables at failure time tf.
Actually forcing variables drop to zero; so, if damage, D,
depends on forcing variables continuously, we have always a
discontinuity of damage at failure. Because of discontinuity of
damage at failure, we have two choices for the identification of
damage at the failure, Df: one is defined at the damage imme-
diately after failure; and the other is defined at the damage
immediately before failure. We will call the former the damage
at the failure defined by approach I; the latter will be called the
damage at the failure defined by approach II. Since after the
specimen is failed no load (or forcing variables) can be carried,
the damage at the failure by approach I (  or ) is always
a constant value (one or infinity) which is the value corre-
sponding to the residual strength zero. However, the damage
at the failure by approach II (  or ) is dependent on forc-
ing variables immediately before failure time tf, so it is gen-

RS
− RS σCP( )=
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+ 0=

D1
a

2b
-----=

a 0 D1↔ 0= =

a 2b D1↔ 1= =
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+
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−

Fig. 3. Example of damage definition for a single-edge-notched
specimen Fig. 4. S-N fatigue curve
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erally not constant. For an example, the usual S-N curve can
have two interpretations. Using approach I the S-N curve cor-
responds to the same damage,  or ; but by
approach II the damage along the S-N curve will be different
because of the difference of forcing variables.

Fig. 4 shows a schematic. Based on this concept we can clas-
sify existing cumulative damage theories. Miner [5], Hashin
and Rotem [8], Hashin [9], Subramanyan [10], Bui-Quoc [19],
etc. used the definition of damage at failure by approach I.
Broutman and Sahu [11], Yang and Jones [14], etc. used the
definition of damage at failure by approach II.

3. SEQUENCE EFFECTS IN FATIGUE

Based on previous discussions of the discontinuity of dam-
age at failure and definitions of failure by approach I and
approach II, we now examine the sequence effects (in fatigue)
for the particular differential evolution law of damage
employed by Yang and Jones [14]. This equation is given by

 (3.1)

where
Φ = dimensionless forcing variable
η = dimensionless time.
If we do not consider the effect of rate of the forcing vari-

able, we can rewrite equation (3.1) as

 (3.2)

where N is the number of cycles and  is the appropriate
forcing variable. For the stress control fatigue we can identify

 as the absolute maximum stress of the generalized ampli-
tude during a cycle. If we do not consider the process of the
recovery of damage, the functions g(D) and f( ) can be only
zero when its argument is zero since it is required that no
damage accumulates in the absence of external loading. If we
identify the damage D as the crack length a, equation (3.2) is
of the same form as used by Paris and Erdogan [20] in the
study of fatigue crack growth,

(3.3)

where A and n are constants, and ΔKI is the difference between
the maximum and the minimum stress intensity factors for
Mode I in a cycle.

Let us define Miner’s coefficient in two-state stress-con-
trolled loading as shown in Fig. 5 as:

 (3.4)

where ni, Ni (i = 1, 2) are the number of cycles and the fatigue
life at the stress level σi, respectively. Let us introduce damage,

D, in the form 

Then we can change D to RS in equation (3.2) as 

(3.5) 

where 

.

The residual strength at the failure by using approach II is

 

and by approach I we have

.

First we calculate Miner's coefficient using approach I.
Knowing the residual strength at the failure is zero and inte-
gration from N = 0 to n1 + n2, equation (3.5) becomes

 (3.6)

but during each of n1 and n2 cycles there is no change in forc-
ing variable . For this reason equation (3.6) can be written
as 

(3.7)

where (i = 1, 2) are appropriate forcing variables in each
block of loading. By equation (3.7) the fatigue lives N1 and N2
by approach I are

 (3.8)

and 
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Fig. 5. Two-state stress controlled loading
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(3.9) 

From equation (3.7) the remaining life n2 after n1 cycles
under the first block loading is

(3.10)

Using equation (3.8) and (3.9), n2/N2 becomes
 

Then the Miner’s coefficient (3.4) is

Therefore there is no sequence effect in the damage evo-
lution law in the form of equation (3.2) and the definition of
failure by approach I. However, by the definition of failure by
approach II the lifetime N1 and N2 can be expressed as follows

(3.11)

and

 (3.12)

where  and  are the residual strength corre-
sponding to the stress levels σ1 and σ2, respectively. In this
case, Miner's coefficient is

(3.13)

If , then . With the assumption of
positiveness of the function  we have

(3.14)

Therefore Miner’s coefficient is greater than one for .
And, if we apply the low amplitude loading block first
( ), the Miner’s coefficient is less than one.

Ostergren and Krempl [21] showed sequence independence
of the damage evolution equation (3.2), using approach I, and
Yang and Jones [14] showed sequence dependence using
approach II for the equation (3.2). However, none of them had
the concept of the discontinuity of damage at the failure.

4. EXPERIMENTAL INVESTIGATION AND 
RESULTS

4.1 Specimens and Material Used
The configuration of specimens used in this study is shown

in Fig. 6. All tubes are made of Graphite/Epoxy prepreg with
stacking sequence [±45]s. Detailed descriptions of the tech-
niques for specimen manufacturing can be found in [22] and
[23].

Materials used in this study include Fiberite hy-E 1048 A1E,
3048 A1k, and 1248 A1F unidirectional prepreg tapes. Accord-
ing to the specifications of these Fiberite prepregs, the only dif-
ference between those different unidirectional prepregs is the
volume percentage of the resin content. It varies from 39% for
Hy-E 1248 A1F to 41% for Hy-E 1048 A1E. Mechanical prop-
erties of Hy-E 3048 A1K unidirectional composites are listed
in Table 1.

For convenience in designating specimens, Hy-E 1048 A1E,
3048 A1K and 1248 A1F are denoted as A, B and C, respec-
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Table 1. Mechanical Properties of Fiberite Hy-E 3048 A1K

σ1f 1.345 GPa ( 195 ksi ) 
σ2f 30 MPa ( 4.35 ksi )
E1 133.8 GPa ( 19,400 ksi)
E2 8.464 GPa ( 1,230 ksi)
G12 4.997 GPa ( 725 ksi)
ν12 0.294
ν21 0.024

tply (thickness) 0.14732 (mm)

Fig. 6. Thin-walled tubular specimen
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tively. The following convention is adopted for the identifi-
cation of specimen:

   B   -            I  -                   I
material used batch number specimen number 
 
If specimens are of the same batch, they are cured at the

same time.

4.2a Overview and Purpose of Tests
Static tension was performed for the determination of ulti-

mate tensile strength.
Pure axial fatigue tests with different R-ratios were per-

formed for the axial fatigue properties and for the study of the
effect of R-ratio.

Two-block loading fatigue tests were done for the study of
sequence effects. After cyclic loading, the residual strength was
measured. All fatigue tests were done at a frequency of 5 Hz.

Because of thicker shoulders of the specimen (see Fig. 6) the
failure location was in the gage section. In all tests failure was
defined as separation of the specimens. 

4.2b Testing Equipment
All tests were carried out in an MTS axial-torsional closed-

loop servo-hydraulic testing system.
For the measurement of strain in the study of sequence

effects an Instron Bialxial Extensometer model A444-8 was
used; and for rest of the experiments uniaxial strain was mea-
sured by an MTS extensometer model 632.11B-20.

4.3 Static Tests
For the determination of ultimate tensile strength, σu, and

shear strength, τu, load control was used. A sine wave of 0.01
Hz with maximum load of 2k1b in axial tests and a maximum
torque of 2k1b-in. in torsional tests are employed, respectively.
Experimental results are listed in Table 2.

4.4 Pure Axial Fatigue
Pure axial fatigue tests were done with different R-ratios (or

simply R). R-ratio is defined as

(4.1)

where σmin and σmax are the (algebraically) minimum stress
and maximum stress during a cycle, respectively. In this defi-
nition, when σmax becomes zero, equation (4.1) is undefined.
For this reason, the inverse of equation (4.1) is taken in the
case of σmax = 0 and denoted as 

 (4.2)

When σmin = 0

(4.3)

Except for two cases, R-ratio is defined as in equation (4.1).

R ratio–

σmin
σmax
----------=

R ratio– or R( ) 0=

R 0_=

Table 2. Ultimate Tensile Strength and Shear Strength of graph-
ite/epoxy [±45]s Tubes

Specimen Number σUTS (MPa)
B-1-6 -131.7
B-2-4 134.9
B-2-5 144.6
B-2-19 148.0
B-3-10 144.6
B-4-5 144.6
B-5-1 145.0
B-6-4 125.0
B-6-7 117.0
B-6-5 145.0

Table 3. Pure Axial Fatigue Data with Different R-ratios

Specimen
Number σa (MPa) R Nf (Cycles)

B-2-6 73.2 -1 2
B-2-1 73.2 -1 267
B-2-7 57.87 -1 1,500
B-3-9 57.87 -1 1,000
B-2-9 57.87 -1 1,000
B-2-8 38.53 -1 317,910
B-2-10 38.53 -1 462,910
B-2-13 38.53 0- 75,000
B-2-14 57.87 0- 400
B-2-15 57.87 0- 610
B-2-12 38.53 0 23,910
B-2-11 28.93 0 143,910
B-5-6 59.23 0 200
B-5-5 54.56 0 5,400
B-5-8 51.44 0 4,400
B-5-7 51.44 0 5,700
B-5-4 51.44 0 4,000
B-7-7 54.56 0 3,000
B-5-3 46.76 0 13,000
B-8-7 46.76 0 9,000
B-8-10 46.76 0 4,000
B-5-2 43.65 0 53,000
B-7-5 35.85 0 56,000
B-1-2 31.07 0 >106 *)

*) Specimen runs out.



188 Deuk Man An

All the fatigue tests were done at 5 Hz in a sinusoidal load vari-
ation with R-ratios 0 and −1. R-ratio equals to –1 corresponds
to the completely reversed loading. Table 3 and Fig. 7 show the
results. In Table 3 σa is defined as

 (4.4)

4.5 Two-step Loading Fatigue
Two-block loading fatigue in the axial direction was applied

to the specimen for the study of the sequence effects. R = 0 was
employed with a frequency of 5 Hz. Fig. 5 shows a schematic
diagram for a two-block loading fatigue. For each specimen
the stiffness in the axial direction was measured at the begin-
ning of the test and after the first block loading. For the mea-
surement of the stiffness in the axial direction, the Instron
Biaxial Extensometer model A444-8 was used. All the results
are listed in Table 4.

4.6 Residual Strength Tests
Residual strength is defined in the form

 (4.5) 

where  and  are ultimate tensile strength at the vir-
gin state and at the damaged state, respectively. The following
tests were performed at R = 0 and at a frequency of 5 Hz. At
first the drop of the residual strength with cycles was deter-
mined with the results given in Table 5. The circles in the fig-
ure 8 indicate the residual strength after a fatigue test with
σa = 46.8 MPa which was terminated at the indicated number
of cycles. Subsequently a tensile test was performed and the
ultimate tensile strength was plotted on the ordinate. 

5. DISCUSSION 

If a specimen has a fatigue limit, say , then in a two-step
loading fatigue with  and , N1 becomes an
infinite quantity and n2 equals N2. For this case Miner’s coef-
ficient becomes 

However if the loading sequence is reversed, there will be a
continuous decrease of residual strength during the first load-
ing. After n1 cycles the fatigue limit for this specimen is less
than . Because n2 and N2 are a finite and an infinite quan-
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fl
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fl
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n2
N2
------+ 1= =
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Fig. 7. The influence of mean stress on the axial fatigue
behaviour of [±45]s graphite/Epoxy tubes 

Table 4. Two-step Fatigue Results for graphite/epoxy [±45]s,
R = 0 at 5 Hz

S.N (MPa) (MPa) (GPa) (GPa) n1 n2

C-10-9 39.0 35.9 11.62 10.29 30,000 54,273
C-10-3 35.9 39.0 11.72 10.60 54,273 19,599
C-10-15 35.1 39.0 11.64 10.92 30,000 4,000
C-10-12 39.0 35.1 13.58 13.11 10,000 100,913
C-10-7 35.1 39.0 13.94 8.98 100,000 2,386
C-10-1 39.0 35.1 13.24 8.03 20,000 5,273
C-10-11 35.1 39.0 13.58 12.32 5,273 4,439
C-10-2 31.2 - 13.24 - 424,238 -
C-10-16 39.0 31.2 13.41 12.04 10,000 320,278
C-10-6 31.2 - 13.02 - 220,074 -
C-10-5 31.2 39.0 13.76 11.27 320,000 5,440
C-10-4 39.0 31.2 13.24 12.32 10,000 123,135
C-10-19 31.2 39.0 13.24 11.52 123,135 3,643
C-10-10 31.2 - 13.58 - 200,933 -
B-6-10 39.0 31.2 13.94 7.21 30,077 6,239
B-6-14 31.2 39.0 15.14 13.24 100,000 30,077

 *σa1, σa2 indicate stress amplitudes in block 1 and block 2 loading,
respectively.
**E0 and E1 denote Young’s moduli at the virgin and damaged
state, respectively.

σa1
*

σa2
* E0

** E1
**

Table 5. Decrease of Ultimate Tensile Strength with a Uniaxial
Fatigue (σa = 46.8 MPa)

Specimen Number n1  (MPa)

B-8-6 1,500 143.4
B-8-5 2,000 141.9
B-8-8 3,000 140.3
B-8-2 5,000 127.1
B-8-3 7,700 132.5
B-8-1 9,900 118.5

σUTS
′
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tity, respectively, and n1 is less than N1, Miner’s coefficient
becomes

It is shown that Miner’s coefficient is greater than one in a
high-low loading sequence with the definition of failure by
approach II.

6. CONCLUSION

1) A new concept of the definition of damage at failure by
approach I and approach II is introduced.

2) Based on experimental results, the effect of mean stress
on fatigue life is very small compared to the stress amplitude.

3) The sequence effects in two-step uniaxial fatigue for
[±45]s graphite/epoxy tubular specimen shows that a high-low
block loading sequence less damaging than a low-high one.
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